Facility Inspection & Condition Assessment Program (FICAP)

Corrosion Manual Training Course

Module 1.1

Introduction and Course Overview

Corrosion Manual Training Course

Introductions

Wiss, Janney, Elstner Associates, Inc.

Stephen Foster, PE

sfoster@wje.com

Jeff West, Ph.D, PE, FACI

jwest@wje.com

Learning Outcomes

Module 1.1 Learning Outcomes

- Summarize the course structure and global learning outcomes.
- Describe course agenda.
- Summarize primary objectives of Corrosion Manual (CM).
- Provide overview and organization of CM.

Will not cover complete review of the FICAP Maritime

Structures Manual

Global Learning Objectives

Inspectors and Engineers

- Describe hierarchy of terms
- Identify components and elements part of inspection
- Describe element condition codes and states to document result
- Conduct inspections per Corrosion Manual

Engineers Only

- Develop a Corrosion Inspection
 Plan per Corrosion Manual
- Assign component ratings and corrosion condition ratings for assets
- Recommend and prioritize follow-up actions

Course Modules

Module	Description	Participants	
1	Course Overview and Introduction to Corrosion Manual		
2	Maritime Asset, Component, and Element Types	Inspectors and Engineers	
3	Inspection Types and Reports		
4	Element Conditions and Condition States		
5	Corrosion Inspection Plan		
6	Assessment for Components and Rating Approach		
7	Recommended Follow-Up Actions	Engineers	
8	Overall Documentation and Reporting Requirements		

Modules: Inspectors and Engineers

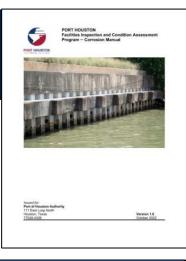
Module 1: Course Overview and Introduction to Corrosion Manual

1.1	Introductions and Course Overview			
1.2	1.2 Introduction to Corrosion Manual			
1.3	Introduction to Inspection and Assessment Approach			
Module 2: Maritime Asset, Component and Element Types				
2.1	PHA Asset Types			
2.2	Component Groups			
2.3	Elements			
2.4	Asset Corrosion Condition Rating			
Module 3: Inspection Types and Reports				
3.1	Inspection Types and Reports			
3.2	Inspection Documentation			
Module 4: Element Conditions and Condition States				
4.1	Element Conditions and Condition States			
4.2	Documenting Element Condition States			
Evaluation:	Exam 1			

Modules: Engineers Only

Module 5: Corrosion Inspection Plan

5.1	Baseline Inspection Planning			
5.2	Routine Inspection Planning			
Module 6: Assessment for Components and Rating Approach				
6.1 Condition Assessment and Rating Approach				
6.2	Corrosion Protection Component Ratings			
6.3	Base Metal Component Ratings			
6.4	Asset Corrosion Condition Rating			
Module 7: Recommended Follow-Up Actions				
7.1	Recommended Follow-Up Actions			
Module 8: Documentation and Reporting Requirements				
8.1	Overall Documentation and Reporting Requirements			
8.2	Database Entry			
Evaluation:	Exam 2			


Module 1.1 Resources

- Table of Contents
- Chapter 1: Introduction
 - 1.1 Background
 - 1.2 Purpose of Inspection Program
 - 1.3 Corrosion Manual Basis and Objectives
 - 1.9 Manual Organization

Corrosion Manual Purpose

- Provide Port Houston with information on corrosion protection systems and the base metals they protect
- Indicate current and future performance (rate of deterioration)
- Used to prioritize and plan preventative and remedial actions to achieve or maintain service life

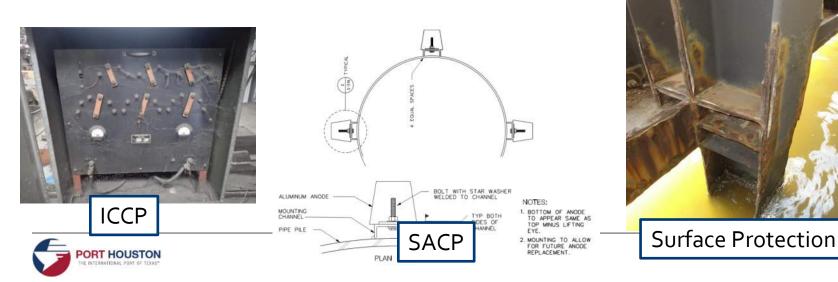
Asset Name	Corrosion Condition Rating (CCR)	Corrosion Protection Component Combined Rating (CP)	Base Metal Component Combined Rating (BM)
Asset 1	53	20	33
Asset 2	92	60	32
Asset 3	74	42	32
Asset 4	21	1	20
Asset 5	33	1	32
Asset 6	92	56	36
Asset 7	19	3	16
Asset 8	79	46	33
Asset 9	60	50	10
Asset 10	68	40	28

Corrosion Manual Introduction

- Primary Objective Statement: Provide a more complete indication of the current and future condition of maritime assets at Port Houston with specific focus on corrosion protection elements, along with the base metals those components protect
- Goal of Manual: Define the process, procedures, and requirements for completing corrosion inspections and condition assessments for corrosion protection components in a consistent manner and level of detail to meet the needs of Port Houston.

Corrosion Manual Objectives

- Part of an overall corrosion management program for Port Houston's maritime assets, including:
 - Analysis of inspection data and performance for corrosion protection systems
 - Assessment of base metal performance via a corrosion damage index – tool to establish severity of corrosion and timeframes for repair
 - Data to predict performance, assess risk, and evaluate effectiveness of corrosion protection over time


Corrosion Protection Components

- Impressed Current Cathodic Protection (ICCP)
- Sacrificial Anode Cathodic Protection (SACP)

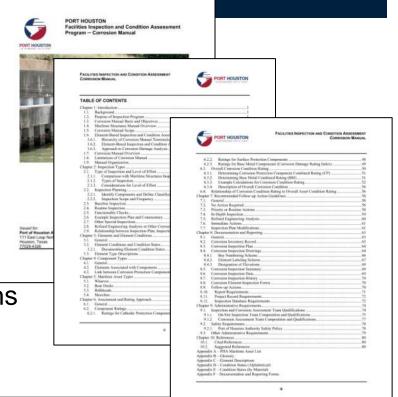
Base Metals are a separate component

Page 13

Surface Protection (e.g. coating, wrap, and metalizing)

Corrosion Manual Organization

- 1. Introduction
- 2. Inspection Types
- 3. Elements and Element Conditions
- 4. Component Types
- 5. Maritime Asset Types
- 6. Assessment and Rating Approach
- 7. Recommended Follow-Up Action Guidelines
- 8. Documentation and Reporting



Organization of Corrosion Manual

- 9. Administrative Requirements
- 10. References

Appendices:

- A. PHA Maritime Asset List
- B. Glossary
- C. Element Descriptions
- D. Condition States (Alphabetical)
- E. Condition States (by Material)
- F. Documentation and Reporting Forms
- G. Corrosion Inspection Drawings
- H. Reference Information

END OF MODULE

Module 1.2 Introduction to Corrosion Manual

Corrosion Manual Training Course

Module 1.2 Learning Outcomes

- State the purpose of an inspection and condition assessment program.
- Relate this purpose to the needs of Port Houston.
- Describe the scope of the Corrosion Manual.

Module 1.2 Resources

Chapter 1: Introduction

- 1.2 Purpose of Inspection Program
- 1.3 Corrosion Manual Basis and Objectives
- 1.5 Corrosion Manual Scope
- 1.6 Element-Based Inspection and Condition Assessment Approach

Introduction to Corrosion Manual

- Goal of Corrosion Manual is to define:
 - Process
 - Procedures
 - Requirements
- In a consistent manner and level of detail to meet needs of the PHA
- Intended to be used by qualified engineers and inspectors

Purpose of Inspection and Assessment

- Define corrosion protection components and elements in use on PHA maritime assets
- Estimate of corrosion protection performance and corresponding impact on the base metal elements
- Better informed resource allocation decisions for maintenance of components and assets

Element-Based Inspection

- Inspection: evaluation procedure in which a qualified team leader carries out or supervises the observation, classification, and documentation of the physical condition of a corrosion protection system or associated metal element through:
 - Visual
 - Tactile
 - Non-Destructive Evaluation
 - Testing / Measurements

Determine corrosion-related distress, including:

- Type
- Severity
- Location(s) and extent

Condition Assessment

- Condition Assessment: evaluation of the inspection results considering the significance of observed and measured conditions
- Based on <u>engineering judgment</u> considering qualitative and quantitative inspection findings
 - May be supplemented by engineering calculations
- Outcome: Determine the need and priority of maintenance, repair, or rehabilitation actions for a given component or asset

Inspection and Condition Assessment

- Element-based inspection approach (similar approach to FICAP Maritime Structures)
 - Type of observed condition (e.g., broken connection, missing anode, error in output display)
 - Severity of observed condition (e.g., size of defects, impact on element performance, severity of section loss)
 - Scope or extent of observed condition (e.g., number of locations, surface area of element affected)

Condition States for each condition per element

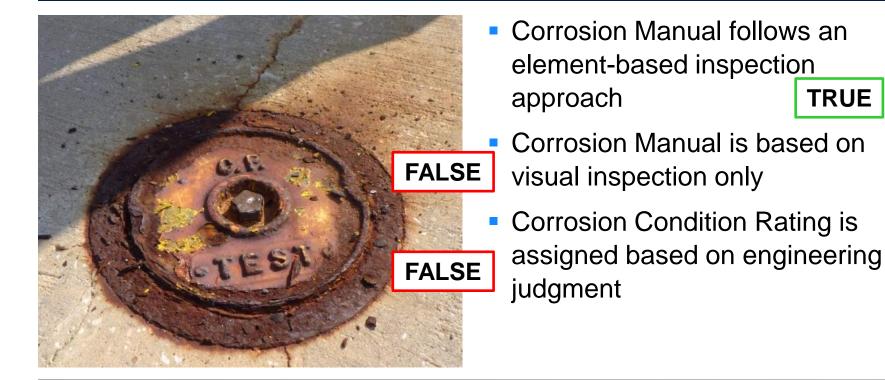
Element Based Approach

Elements:

 Condition States based on Inspection

Components:

 Numerical rating based on judgment and functional condition


Asset

 Corrosion Condition Rating (based on component ratings)

Level	Purpose	Comment
Asset	 Corrosion assessment for asset guides follow-up actions and asset management decisions. 	 Overall corrosion condition rating (CCR) is a numerical rating and is supplemented by a qualitative (descriptive) assessment
Component	 Component condition assessment indicates condition of corrosion protection or base metal components. Where appropriate, inspection measurements provide basis for overall component condition. Provide basis to determine overall corrosion condition. 	 Numerical component rating is based on an engineering interpretation of the element condition states, inspection data, and their corresponding implication(s) on the functional condition of the component. Base metal component rating is based on the estimated corrosion damage rating index of critical, typical, and radiudant elements
Element	 Condition states document occurrence of damage, deterioration, or defects at time of inspection in terms of: Type of condition(s) (i.e. damage mechanism) Severity of defect (i.e. moderate, severe) Extent of defect (i.e. localized or general) Correlates conditions to element and material type. Tracks conditions over time as indicated by inspections conducted at regular intervals. Selective measurements of key parameters provide basis for corrosion damage rating index of overall component. Provides basis for component rating. 	 Detailed visual inspections are conducted at the element level. Element condition states are assigned based on predefined categories and quantified to define element condition.

Knowledge Check: True or False?

END OF MODULE

Module 1.3

Inspection and Assessment Approach

Corrosion Manual Training Course

Module 1.3 Learning Outcomes

- Explain hierarchy of facility terms
- Define application of element-based approach to corrosion inspection and assessment program

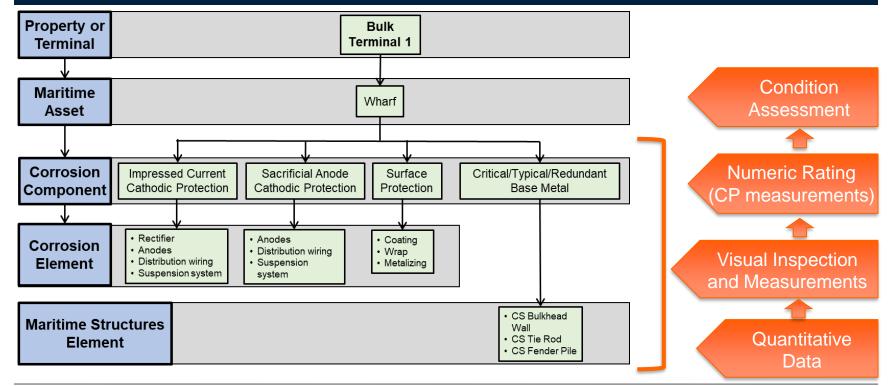
Module 1.3 Resources

Chapter 1: Introduction

 1.6 Element-Based Inspection and Condition Assessment Approach

Inspection and Assessment Approach

- Element-based inspection and condition assessment approach
- Elements grouped by Component
 - Impressed Current CP
 - Sacrificial Anode CP
 - Surface Protection
 - Base Metal



Elements:

Anodes, Power Supply, Wiring & Protection, Supports...etc.

Corrosion Manual Hierarchy

Inspection and Assessment Approach

- Relies on two equally important factors:
 - Completeness and quality of the documented condition of the asset determined during the inspection
 - Experience and knowledge of the engineer(s) responsible for the assessment

Similarities to Maritime Structures

- Relationship between elements and components remains mostly similar
- General pattern for assessing and providing condition ratings for components and the overall assets
- Documents visual condition of each inspected element

Differences from Maritime Structures

- Additional inspection techniques/ measurements:
 - Document performance of corrosion protection components
 - Estimating the section loss and corrosion rates of base metals
- Base Metal Classification (Critical, Typical, or Redundant)

Module Wrap-Up

- What corrosion protection element characteristics should be recorded to facilitate a credible condition assessment?
 - ✓ Types of elements that may have damage, deterioration, or defects
 - ✓ Type of condition (i.e., damage, deterioration, or defect) observed
 - Severity of condition observed
 - Scope or extent of condition observed

Performance of installed systems, often times indicative of multiple elements of the corrosion protection component

Module Wrap-Up, cont'd.

- What base metal element characteristics should be recorded to facilitate a credible condition assessment?
 - Element type that has a corrosion condition
 - **Y** Type of condition (i.e., corrosion or section loss) observed
 - Severity of condition observed
 - Scope or extent of condition observed

Measurement of section loss (facilitate estimate of corrosion rate)

END OF MODULE

Module 2.1

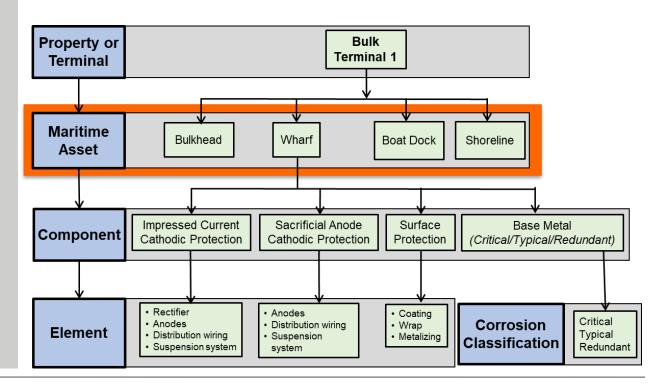
PHA Asset Types

Corrosion Manual Training Course

Module 2.1 Learning Outcomes

- Identify maritime assets within the PHA inventory.
- Describe the functional purpose of each maritime asset type: wharf, boat dock, and bulkhead, and shorelines.

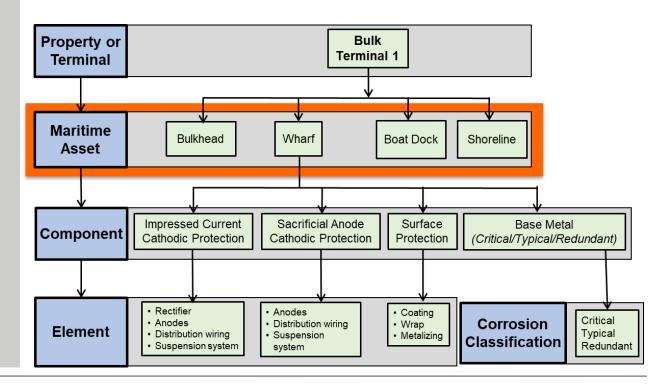
Module Resources


Chapter 5: Maritime Asset Types

- 5.1 Wharves
- 5.2 Boat Docks
- 5.3 Bulkheads
- 5.4 Shoreline
- Appendix A: PHA Maritime Asset List
- Appendix B: Glossary

Maritime Asset

Maritime Asset: A unit of a property or terminal that has a defined boundary and serves a functional purpose

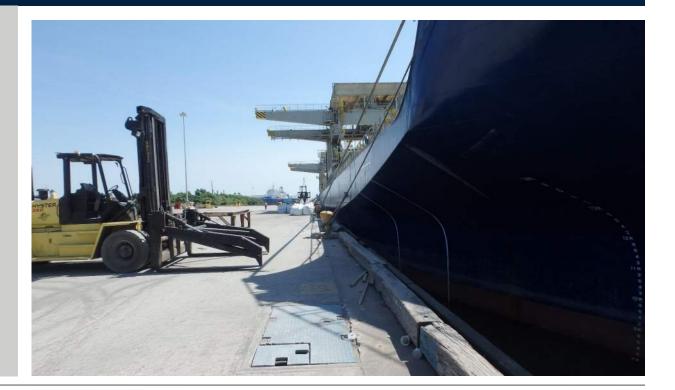


Maritime Asset

Four main types of asset:

- 1. Wharf
- 2. Boat Dock
- 3. Bulkhead
- 4. Shoreline

Wharf


 Structure oriented parallel to shore for mooring ships

Wharf

- Structure oriented parallel to shore for mooring ships
- Purpose: loading and unloading cargo or personnel from large vessels

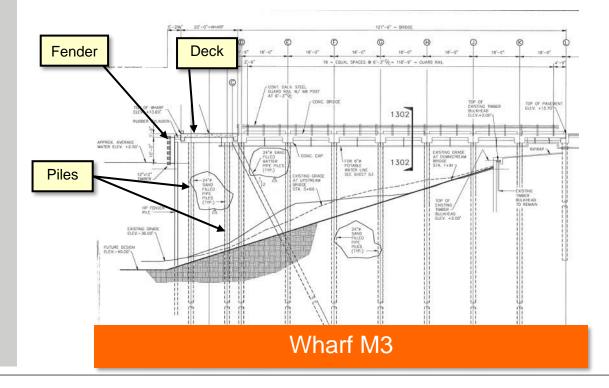
Wharf

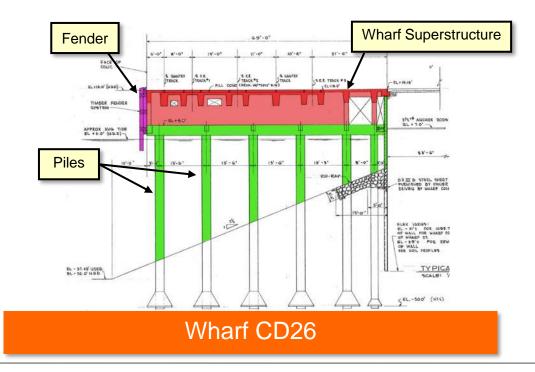
- Structure oriented parallel to shore for mooring ships
- Purpose: loading and unloading cargo or personnel from large vessels

Consists of one or more structural systems:

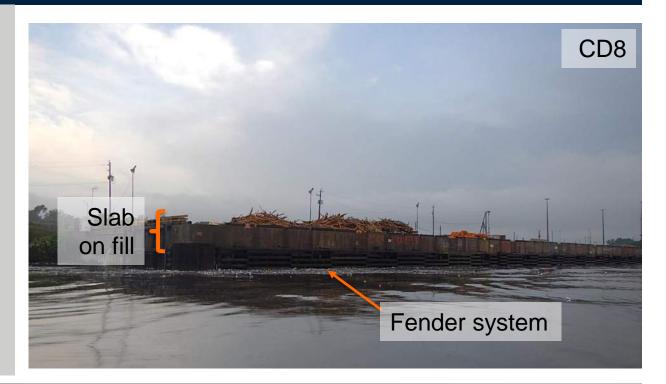
- Open platform with open structure
- Open platform with solid structure
- Solid bulkhead
- Solid bulkhead with relieving platform

Wharf: Open platform, open structure


- Open platform: Water free to move underneath
- Open structure: Structure supported over water by piles or drilled shafts

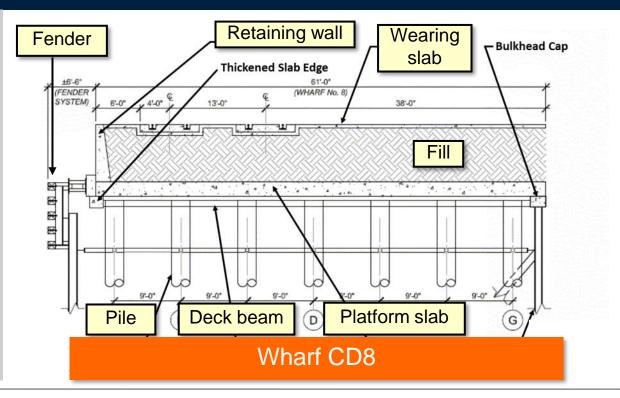

Wharf: Open platform, open structure

- Open platform: Water free to move underneath
- Open structure: Structure supported over water by piles or drilled shafts


Wharf: Open platform, open structure

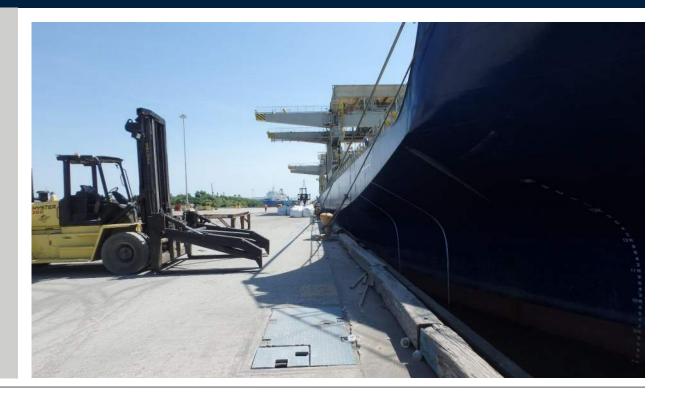
- Open platform: Water free to move underneath
- Open structure:
 Structure
 supported over
 water by piles or
 drilled shafts

Wharf: Open platform, solid structure


- Open platform: Water free to move underneath
- Solid structure: Deck supported on fill, supported on structural platform slab

Wharf: Open platform, solid structure

 Open platform: Water free to move underneath


 Solid structure: Deck supported on fill, supported on structural platform slab

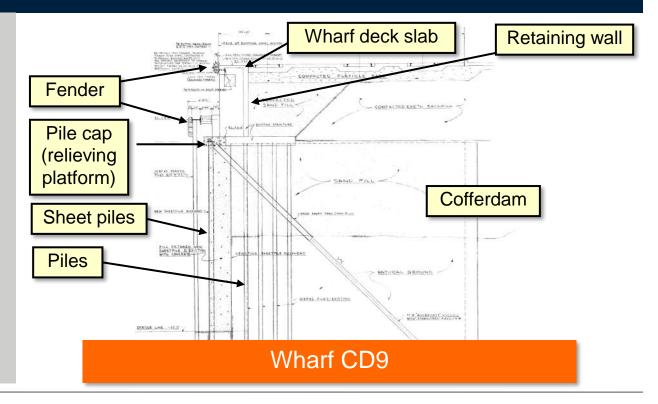
Wharf: Solid bulkhead

Solid bulkhead:

Wharf structure supported on fill retained by wall or sheet piles

Wharf: Solid bulkhead, relieving platform

- Solid bulkhead: Wharf structure supported on fill retained by wall or sheet pile
- Relieving platform: Buried support structure



Wharf: Solid bulkhead, relieving platform

Solid bulkhead:

Wharf structure supported on fill retained by wall or sheet pile

 Relieving platform: Buried support structure

Boat Dock

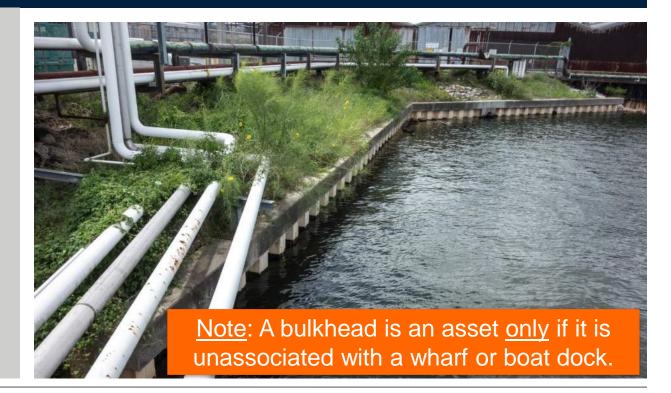
 Similar to wharves, but self-supporting

Functional purpose: loading and unloading cargo or personnel from vessels

Boat Dock

 Similar to wharves, but self-supporting

Functional purpose: loading and unloading cargo or personnel from vessels


Three general categories:

- Open platform with open structure
- Solid bulkhead
- Floating platform

Bulkhead

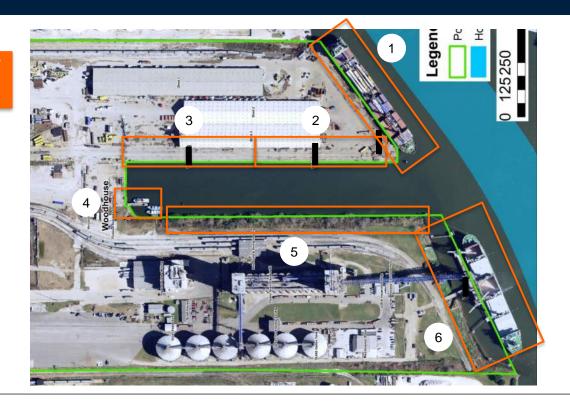
- Vertical step in elevation
- Functional purpose: separate shoreline from water

Shoreline

- Intersection between land and water
- May be protected or unprotected

Four Types of Maritime Assets

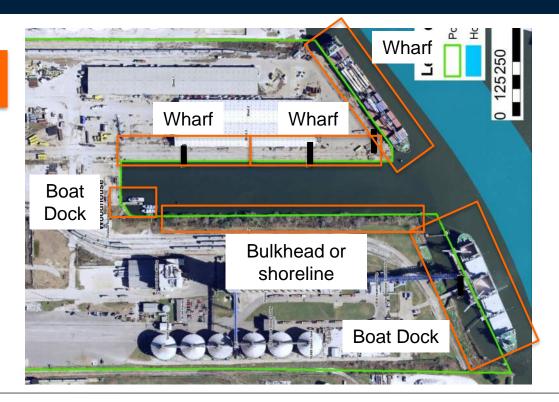
- Wharf
- Boat dock
- Bulkhead
- Shoreline



Which maritime assets can you identify?

- Woodhouse Terminal
 - = collection of wharves

Recall "terminal"


- Wharves?
- Boat docks?
- Bulkheads?
- Shorelines?

Which maritime assets can you identify?

- Woodhouse Terminal
- Recall "terminal" = collection of wharves
- Wharves?
- Boat docks?
- Bulkheads?
- Shorelines?

Module Wrap-Up

Module 2.1 Learning Outcomes

- 1. Identify maritime assets within the PHA inventory.
- 2. Describe the functional purpose of each maritime asset type:
 - a. Wharf
 - b. Boat dock
 - c. Bulkhead
 - d. Shoreline

END OF MODULE

Module 2.2

Component Groups

Corrosion Manual Training Course

Overview

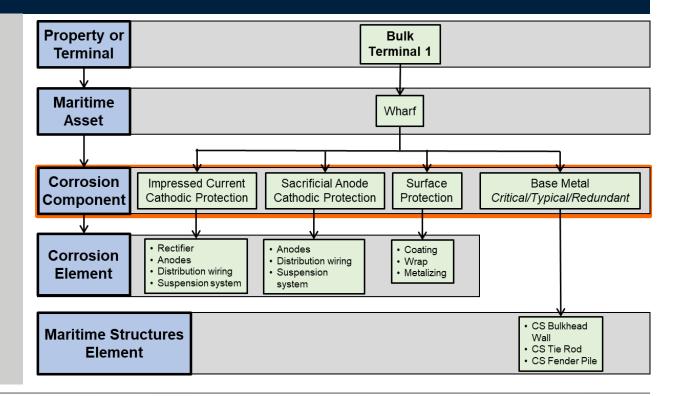
Module 2.2 Learning Outcomes

- Identify component types within the PHA CM Inventory.
- Identify elements within each component.
- Differentiate between a component and an element.
- Describe the functional purpose of each component type: impressed current cathodic protection, sacrificial cathodic protection, surface protection, and base metal.

Module Resources

Chapter 4: Component Types

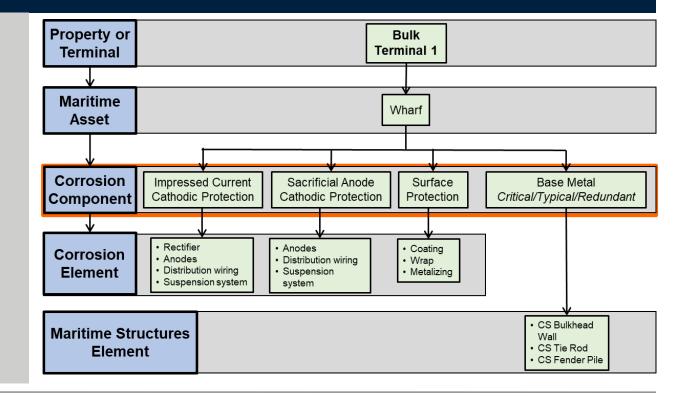
- 4.1 General
- 4.2 Elements Associated with Components
- 4.3 Link between Corrosion Protection Component and Maritime Structures Elements
- Appendix C



Hierarchy of Terms: Component

Component:

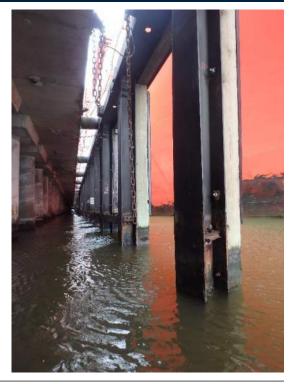
group of elements that make up a particular corrosion protection system or a group of corresponding base metal elements.


 Manual includes four components

Hierarchy of Terms: Component

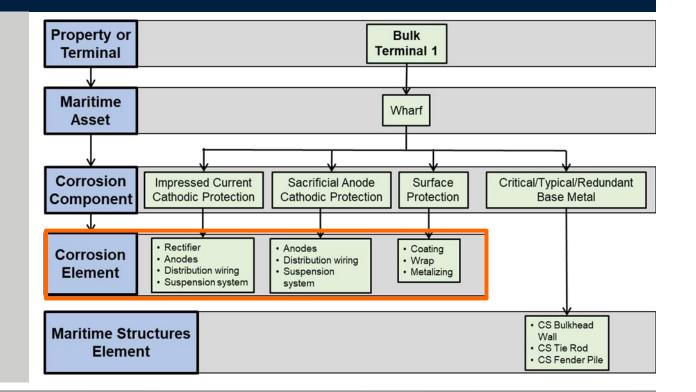
Four component groups:

- 1. ICCP
- 2. SACP
- 3. Surface Protection
- 4. Base Metal

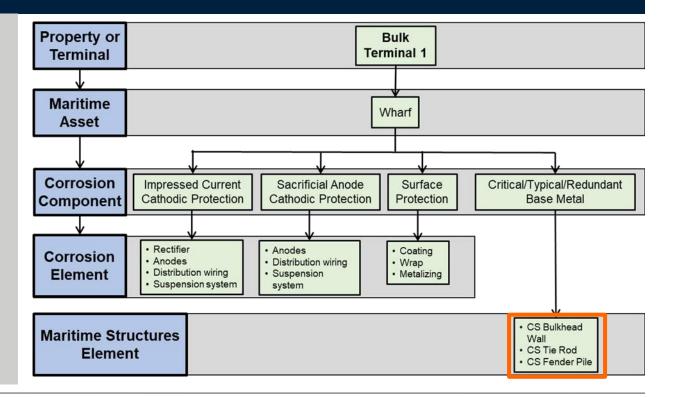

Corrosion Protection Components

- Impressed Current (ICCP) and Sacrificial Anode (SACP) Cathodic Protection Components
 - A group of elements that comprises a ICCP or SACP system for the purpose of protecting structural or functional elements
- Surface Protection Components
 - A group of elements that are applied to the surface of existing structural or functional elements to mitigate or prevent corrosion of the underlying element

Base Metal Components


- Defined to track the corrosion damage of metal elements
 - Same metal elements exist in Maritime Structures Manual
- Base Metal component is a way to classify elements based on their importance
- Group of elements with the same corrosion classification (Critical, Typical, or Redundant).

Hierarchy of Terms: Corrosion Element


- Element: individual member of a corresponding component
- Defined by components to which it belongs, functional purpose, geometry, and material.

Hierarchy of Terms: Base Metal Element

- Base Metal Element: elements that are protected by a corrosion component
- Grouped into one of three Base Metal Corrosion Components
 - Critical
 - Typical
 - Redundant

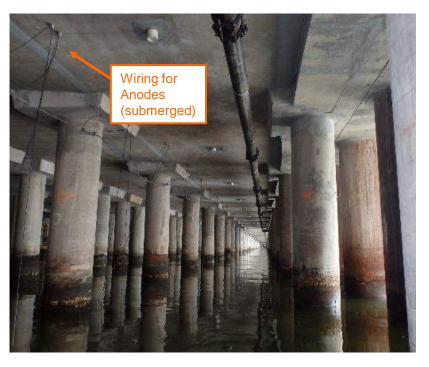
ICCP Component

Functional Purpose

 Supplies electric current by a device employing external power to protect base metal elements

Example Elements

- Anodes: Inert material (typically) that conducts by oxidation of electrolyte to protect base metal elements
- Supplementary Anode Material: Backfill material for more efficient current distribution
- DC Power Supply: Converts AC to DC for distribution into the system


SACP Component

Functional Purpose

 Supplies CP due to a difference in electric potential between the sacrificial anode and the cathode (base metal)

Example Elements

- Anodes Sacrificial: A metal that provides sacrificial protection to another metal that is more noble when electrically coupled in an electrolyte
- Wiring, Supports, Monitoring Equipment, Supplementary Anode Materials

Surface Protection Component

Functional Purpose

 Mitigate or prevent corrosion by providing protection to the external surface

Example Elements

- Coatings: single or multi-coat systems
- Metalizing: molten metal sprayed on to surface of metal or concrete
- Galvanizing: dip base metal in a molten bath of zinc
- Protective Wraps: provide barrier protection

Base Metal Component

Functional Purpose

Groups existing metal elements in the Maritime Structures Manual for purpose of corrosion classification and scoring in the Corrosion Manual

Base Metal Component Classification Levels

- Critical (BMC): Loss will likely significantly compromise the function and/or capacity of the associated component and/or other elements (e.g. bulkhead tie rods)
- **Typical (BMT):** Loss may reduce the function or capacity of the associated component or asset, but the asset can remain in service (e.g. bulkhead wall)
- Redundant (BMR): Loss will not compromise function of component (e.g. fender support framing)

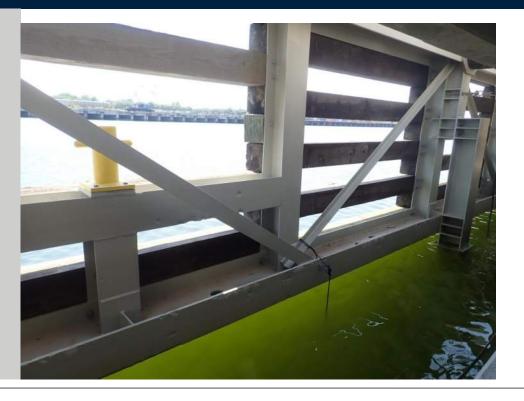
Base Metal Component

Table C-4 in Appendix C

	Table C-4. Ba	ise Metal Componen	t Elements	10.	Table C-4. Base Metal Component Elements				Table C-4. Base Metal Component Elements					
Element Code(s)	Element Descriptor	Elem	ent Identification	Units ⁴	Element Code(s)	Element Descriptor	Eler	ment Identification	Units4	Element Code(s)	Element Descrip	tor Element Iden	tification	Units
	Critical (BMC)			Typical (BMT)					Redundant (BMR)					
TR-CS-BMC TR-GS-BMC	CS Tie Rod GS Tie Rod	used as bracing and retaining walls. Doe	tural element. Includes elements those used as tie backs for s not include rods used solely for	EA	AW-CS-BMT	a retaining wall or bulkhead. Used as anchorage for another element.		SF-CS-BMR SF-GS-BMR	GS-BMR GS Support Framing the fender system an mooring forces, but			LF		
DB-CS- BMC	CS Deck Beam	railing.	loaded perpendicular to its		BW-CS-BMT BW-GS-BMT	CS Bulkhead Wall GS Bulkhead Wall	A structural wall element that functions primarily as an earth retaining structure. Primarily subject to out- of-plane lateral loads. Bulkheads generally separate earth fill from water.		- 2015			primary-load carrying member purposes.	ers for inspection	
DB-GS- BMC	GS Deck Beam	longitudinal axis that	t transmits loads directly from or substructure element.	LF					LF	DU-GS-BMR	GS Deck (stay-in-pla form)	ace A horizontal, planar structura and distributes loads to super-		SF
GI-CS- BMC GI-GS- BMC	CS Girder GS Girder	longitudinal axis that	t loaded perpendicular to its t transmits loads from a deck	15	DT-CS- BMT	CS Deck, open Grid	A horizontal, planar structural element that carries and distributes loads to superstructure or substructure elements. Observations specific to topside of element.				,	substructure elements. Observ	substructure elements. Observations specific to underside or full-depth of element.	
and and a second second	1999		he substructure. May also carry a portion of the deck.	LF	- The second	22			SF	FL-CS-BMR FL-GS-BMR	CS Fender Panel GS Fender Panel	system that increases the cont	A rectangular element oriented parallel to the fender system that increases the contact area of the fender	
GP -CS- BMC GP-WS- BMC	CS Gusset Plate WS Gusset Plate	between other struct	ement that provides a connection ural elements. Constructed with hat may be bolted, riveted, or	EA	SR-CS- BMT SR-GS- BMT	CS Stringer GS Stringer		nt loaded perpendicular to its hat transmits loads from the deck				system against the ship hull.		L
		welded.					to a deck beam		LF		F	Redundant		
CO-CS- BMC CO-GS- BMC	CS Column GS Column		element that transmits loads /or bending) from the deck or ubstructure element.	LF	RW-CS- BMT	CS Retaining Wall	etaining Wall A structural wall element that functions primarily to					BMT		
PI-CS- BMC	CS Pile	Critical	tical element that transmits uperstructure, or substructure				Typical	ning walls are located above	LF			Divit		
		BMC	d bearing or friction. Piles are allation and driven into the idered deep foundation	EA	CF-CS- BMT	CS Cofferdam	BMT	Il structural elements used as a tructure.	EA					
PF-CS(S)- BMC PF-CS(C)- BMC	CS Sand-Filled Pile CS Concrete-Filled Pile	driven into the groun	onsists of a hollow steel pipe and and then filled with material. Piles", which are concrete-filled	EA	BB-CS- BMT	CS Bulkhead Wale Beam	longitudinal axis th	ar toaded perpendicular to its hat stiffens a bulkhead and is s or other anchorages.	LF					
		pipes with tapered c			BC-CS-BMT	CS Bent Cap		ented structural element that	1.000	8				
PC-CS- BMC	CS Pile Cap		ted structural element that substructure or superstructure	1 F			transmits loads from superstructure elements to column elements below.		LF					
BG-CS- BMC	CS Closed Web/Box	elements above to p	ile elements below. d structural element loaded		BR-CS- BMT BR-GS- BMT	CS Brace GS Brace	An element, often diagonally oriented, fastened across pile elements to provide lateral stability. A type of pile that is driven at an angle, typically between 30 and 60 degrees from vertical. Battered piles provide lateral stiffness to the structure.		EA					
DU*CS+ BMC	Girder	perpendicular to its	a structural element loaded longitudinal axis that transmits eam or stringer to the	LF	PB-CS- BMT	CS Battered Pile			EA					
BT-CS- BMC BT-GS- BMC	CS Bulkhead Tie Rod GS Bulkhead Tie Rod			EA	FP-CS- BMT FP-GS- BMT	CS Fender Pile GS Fender Pile	A vertical element bending of the mer	that absorbs energy through mber. Fender piles are typically nucl bed and braced at their top to	EA					

Summary of Components

- Components -> Elements
- Corrosion Protection Components
 - ICCP
 - SACP
 - Surface Protection
- Base Metal Components
 - Critical, Typical, Redundant
 - Maritime Structure Metal Elements



Practical Examples

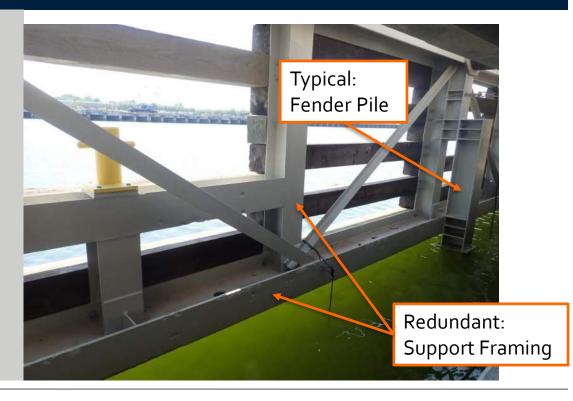
What corrosion protection component(s) are shown in this photo?

- a. SACP
- b. ICCP
- c. Surface Protection

What corrosion protection component(s) are shown in this photo?

- a. SACP
- b. ICCP
- c. Surface Protection

What base metal component(s) are shown in this photo?


- a. Critical
- b. Typical
- c. Redundant

What base metal component(s) are shown in this photo?

- a. Critical
- b. Typical
- c. Redundant

What corrosion protection component(s) are shown in this photo?

- a. SACP
- b. ICCP
- c. Surface Protection

What corrosion protection component(s) are shown in this photo?

a. SACP

b. ICCP

c. Surface Protection

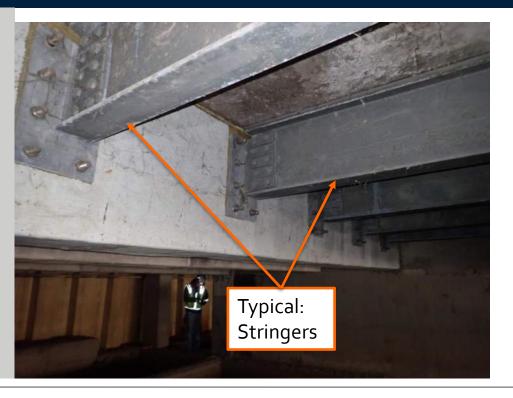
What corrosion protection component(s) are shown in this photo?

- a. SACP
- b. ICCP
- c. Surface Protection

What corrosion protection component(s) are shown in this photo?

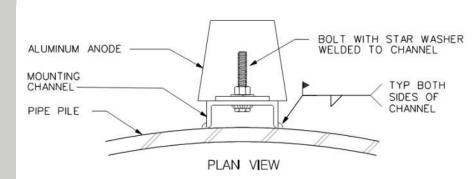
- a. SACP
- b. ICCP
- c. Surface Protection

What base metal component(s) are shown in this photo?


- a. Critical
- b. Typical
- c. Redundant

What base metal component(s) are shown in this photo?

- a. Critical
- b. Typical
- c. Redundant



What corrosion protection component(s) are shown in this photo?

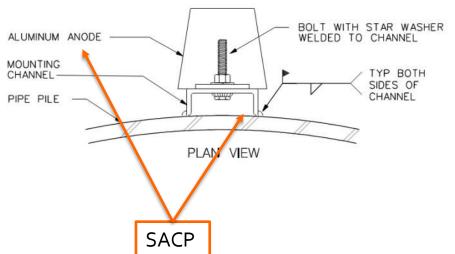
a. SACP

b. ICCP

c. Surface Protection

NOTES:

- 1. BOTTOM OF ANODE TO APPEAR SAME AS TOP MINUS LIFTING EYE.
- 2. MOUNTING TO ALLOW FOR FUTURE ANODE REPLACEMENT.



What corrosion protection component(s) are shown in this photo?

a. SACP

b. ICCP

c. Surface Protection

NOTES:

- 1. BOTTOM OF ANODE TO APPEAR SAME AS TOP MINUS LIFTING EYE.
- MOUNTING TO ALLOW FOR FUTURE ANODE REPLACEMENT.

Module Wrap-up

- 1. Identify component types within the PHA corrosion inventory.
- 2. Differentiate between a component and an element
- 3. Describe the functional purpose of each component type:
 - a. ICCP
 - b. SACP
 - c. Surface Protection
 - d. Base Metal

END OF MODULE

MODULE 2.3

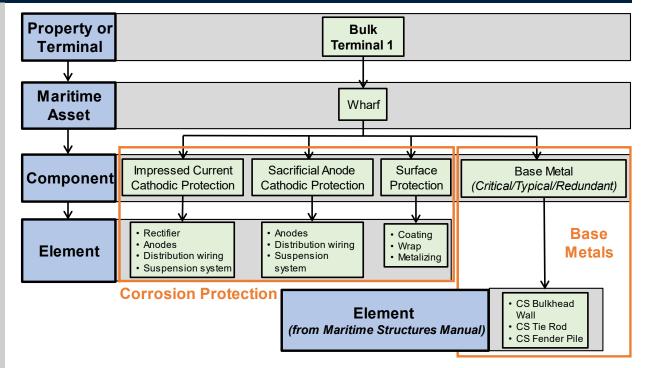
Elements

Corrosion Manual Training Course

Module Objectives

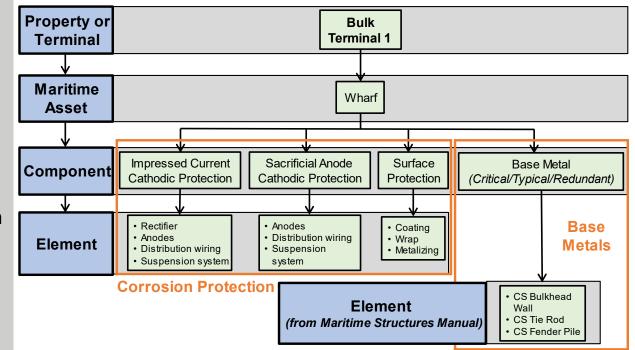
Module 2.3 Learning Outcomes

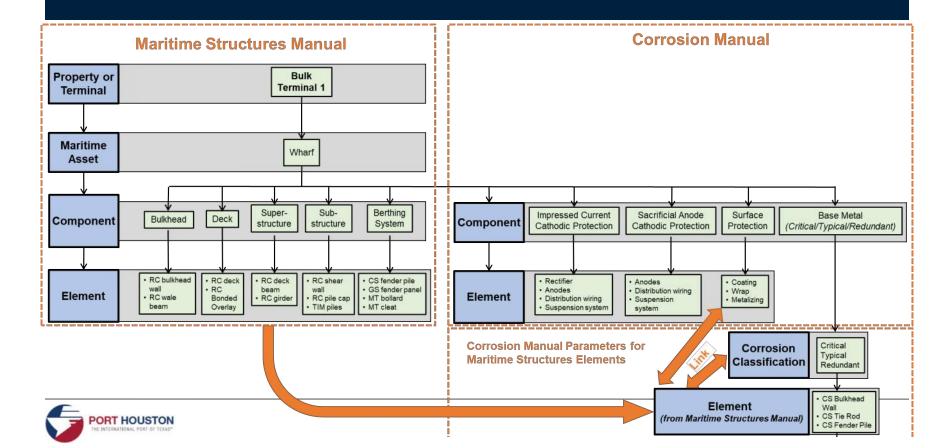
- Describe the hierarchical relationship between an element, a component, and an asset
- Differentiate between corrosion protection and base metal elements within the PHA inventory
- Describe the system used to identify and categorize elements and components
- Complete element codes, IDs, and descriptions for inventory reporting


Module Resources

- Chapter 3, Elements and Element Conditions
 - 3.1 General
 - 3.2 Element Type Descriptions
 - 3.3 Element Conditions and Condition States
- Appendix B: Glossary
- Appendix C: Element Descriptions

Hierarchy: Corrosion Protection Elements


- Corrosion
 Protection Element: individual member of a corresponding corrosion protection component
- Defined by components to which it belongs, functional purpose, geometry, and material.


Hierarchy: Base Metal Elements

- Base Metal Element: metal elements that are protected by a corrosion protection component
- Classified based on importance to a given component:
 - Critical
 - Typical
 - Redundant

Relationship with Maritime Structures

- Associated Component: provides the component of which the individual element is a part.
- Element Code: indicate the element type and material for ease of documentation
- Element Descriptor: A unique name is given for the individual element
- Element Identification: The element is described in narrative for identification and categorization by the field inspection personnel
- Measured units: measurement basis by which an element's condition state is quantified

Elements

- Elements in PHA inventory are defined in terms of:
 - Associated component
 - Element code
 - Element descriptor
 - Element identification
 - Measured units

	Table C-3. Surface Protection Component Llements						
Element Code(s)	Element Descriptor	Element Identification	Units ³				
	Coatings, Wraps, an	d Metalizing (CT, HG, ML, & WP)					
CT-AC CT-EP CT-CE CT-PU CT-OT	AC Coating EP Coating CE Coating PU Coating OT Coating	Coating elements serve to protect steel or concrete elements and may be applied in single- coat or multi-coat systems. Quantity is based on square foot of element.	SF				
HG-HDG	HDG Galvanizing	Hot-dip galvanizing provides a sacrificial coating system by dipping the element in a molten bath of zinc during the fabrication process of the steel.	SF				
ML-AL ML-ZN ML-AZ ML-AZI ML-TI	AL Metalizing ZN Metalizing AZ Metalizing AZI Metalizing TI Metalizing	Metalizing may be applied to steel or concrete elements and is applied by spraying molten metal on the element. For reinforced concrete elements, connections to the steel reinforcement is required. Quantity is based on square foot of element.	SF				

Elements

- Elements in PHA inventory are defined in terms of:
 - Associated component
 - Element code

- Element descriptor

PORT HOUSTON

- Element identification
- Measured units

Element Code(s)	Element Descriptor			its ³
	Coatings, Wraps, and	Meta	Element code:	
CT-AC CT-EP CT-CE CT-PU CT-OT	AC Coating EP Coating CE Coating PU Coating OT Coating	Coa con coa squ	CT-EP Element type Element material	F
HG-HDG	HDG Galvanizing	Hot coa mol pro	CT: Coating EP: Epoxy	F
ML-AL ML-ZN ML-AZ	AL Metalizing ZN Metalizing AZ Metalizing	Met eler met	Element code (base metals):	
ML-AZI ML-TI	AZI Metalizing TI Metalizing	eler is re	BW-CS-BMT	F
			Critical (BMC), Typical (BMT), Redundant (BMR)	

Element Type Descriptors

- Elements in PHA inventory are defined in terms of:
 - Associated component
 - Element code
 - Element descriptor
 - Element identification
 - Measured units

Element	Element		Description
	Aluminum	AL	Aluminum alloy anodes are used primarily in seawater application and can be produced in a variety of alloys.
	Cast Iron	CI	Cast iron anodes can be used in fresh water, seawater, or underground applications. High-silicon cast iron is a commonly used alloy containing silicon, chromium, and iron.
Anodes	Dual	DL	Dual galvanic anodes can be made with a highly active anode metal casing (e.g. magnesium) and a less active core (e.g. zinc). These anodes are designed to provide a high initial current density to achieve initial cathodic polarization.
	Graphite	GP	Graphite anodes are used in soils, flowing seawater, and mud and are typically impregnated with a sealer to prevent failure from gas evolution in pores. Oftentimes used within anode wells.
	Magnesium	MG	Magnesium anodes are available as high-potential or low- potential alloys and are normally used in soils and fresh water.
	Zinc	ZN	Zinc anodes are available in two alloys; one for use in soils and the other for seawater application. Can be manufactured as a bulk anode or a mesh.

Table 3.1. Materials for Corrosion Protection and Base Metal Elements

Corrosion Elements

- Elements in PHA inventory are defined in terms of:
 - Associated component
 - Element code
 - Element descriptor

Element identification

Measured units

Element Code(s)	Element Descriptor	Element Identification	Units ³
	Coatings, Wraps, and	Metalizing (CT, HG, ML, & WP)	
CT-AC CT-EP CT-CE CT-PU CT-OT	AC Coating EP Coating CE Coating PU Coating OT Coating	Coating elements serve to protect steel or concrete elements and may be applied in single- coat or multi-coat systems. Quantity is based on square foot of element.	SF
HG-HDG	HDG Galvanizing	Hot-dip galvanizing provides a sacrificial coating system by dipping the element in a molten bath of zinc during the fabrication process of the steel.	SF
ML-AL ML-ZN ML-AZ ML-AZI ML-TI	AL Metalizing ZN Metalizing AZ Metalizing AZI Metalizing TI Metalizing	Metalizing may be applied to steel or concrete elements and is applied by spraying molten metal on the element. For reinforced concrete elements, connections to the steel reinforcement is required. Quantity is based on square foot of element.	SF

Corrosion Elements

- Elements in PHA inventory are defined in terms of:
 - Associated component
 - Element code
 - Element descriptor
 - Element identification
 - Measured units

Element Coo	Element Code(s) Element Descriptor Element Identification					
	Coating	s, Wraps, and Metalizing (CT	r, HG, ML, & WP)			
CT-AC	AC Coating	Coating element	nts serve to protect steel or			
CT-EP CT-CE CT-PU CT-OT	SF: square foot LF: linear foot Elements whose primary function					
HG-HDG	depends on area (e.g. protective coatings) or length (e.g. deck beam) ing the element in a ring the fabrication					
ML-AL ML-ZN ML-AZ ML-AZI		at function as a unit (e.g power supplies)	lied to steel or concrete by spraying molten for reinforced concrete to the steel reinforcement	SF		
ML-TI	TI Metalizing	is required. Qu element.	antity is based on square foot of			

Practical Example

Practical Example

Impressed Current Cathodic Protection Component

Which component do Transformer **Bulkhead Wall Rectifier Unit** (BW-CS-BMT) these photographs (PW-TRU) **PVC** Protection Wiring Can you identify (PR-PVC) (WI-CU) elements associated with this component? Supports Support Framing (SI-CS) Can you identify base (SF-CS-BMR) metal elements Anodes Wiring (AN-OTH) (WI-CU) Fender Piles (FP-CS-BMT)

pictured?

represent?

Practical Example: PW-TRU

Table 3.1

- DC Power Supply (PW)
- Transformer
 Rectifier Unit
 (TRU)

PORT HOUSTON

	Batteries	BAT	Batteries can be used for CP systems that require small output current.
DC Power Supply	Electric Circuit Breaker	EB	Circuit breakers are used to disconnect circuits and depower electric equipment. Only circuit breakers directly related to Power Supplies for CP systems (e.g. circuit breakers between AC power supply and transformer-rectifier units that are near the unit).
	Electric Panel	EP	Electric panels, typically operating at 240V or greater, are used to split and distribute AC to multiple transformer- rectifier units.
	Transformer- Rectifier Unit	TRU	Powered by an AC current, TRUs converts AC input to DC output current for use in the CP system.

Table C-1. Impressed Current Cathodic Protection (ICCP) Component Elements						
Element Code(s) Element Descriptor		Element Identification	Units ¹			
DC Power Supply (PW)						
PW-BAT PW-CB PW-FP	BAT DC Power Supply PW DC Power Supply EP DC Power Supply	Electrical devices used to provide DC power for any impressed current CP system.	EA			
PW-TRU	TRU DC Power Supply					

Practical Example: BW-CS-BMT

Carbon Steel
 Bulkhead Wall

Typical Base Metal

BW-CS-BMT

RT HOUST

Table 3.	1	
	Galvanized Steel	1

	Galvanized Steel	GS	Carbon steel that has been hot-din galvanized with zinc
	Steel	CS	Carbon steel materials.
Metals ¹	Stainless Steel	SS	Stainless steel materials. Stainless steels have a minimum of 10.5 percent chromium and are available at various grades with varying corrosion resistance.

	Table C-4. Base Metal Component Elements				
Element Code(s)	Element Descriptor	Element Identification			
Typical (BMT)					
AW-CS-BMT	CS Anchor Wall	A continuous buried wall element on the landside of a retaining wall or bulkhead. Used as anchorage for another element.	LF		
BW-CS-BMT BW-GS-BMT	CS Bulkhead Wall GS Bulkhead Wall	A structural wall element that functions primarily as an earth retaining structure. Primarily subject to out- of-plane lateral loads. Bulkheads generally separate earth fill from water.	LF		

Element Identification

Each element is labeled with a unique identification:

- Element type
- Location on the asset
- Same methodology of element identification as FICAP
- Corrosion components may contain several elements having the same element code and material (e.g. PW-BAT)
- Base metal element identification same as previously defined in FICAP

Element Identification

Element Code PW, ME, WI, etc.

First two letters of element code (material type not included) Bay Number 1, 2A, 2B, etc.

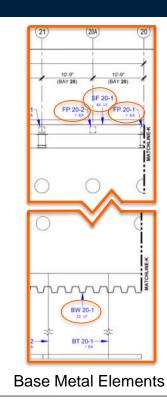
Numbered sequentially, upstream to downstream

Letters for different structural systems

PW3-1

*Bays same as defined in FICAP Maritime Structures Element Number 1, 2, 3, etc.

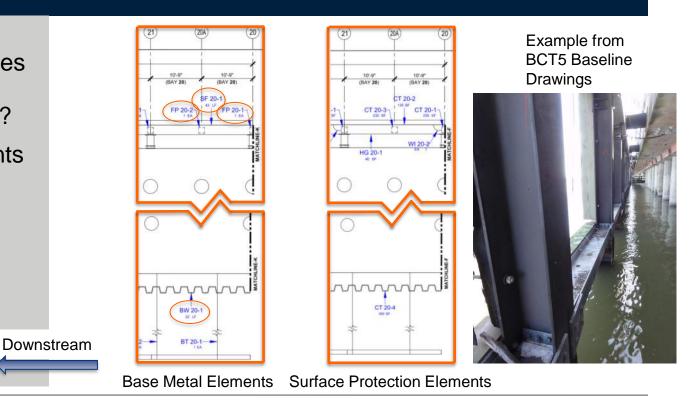
Numbered sequentially upstream to downstream, water to land, top to bottom


Example: Element IDs

Downstream

- What are the codes for protective coating elements?
- Protected elements shown:
 - FP20-1
 - SF20-1
 - FP20-2

RT HOUS


• BW20-1

Example: Element IDs

- What are the codes for protective coating elements?
- Protected elements shown:
 - FP20-1
 - SF20-1
 - FP20-2
 - BW20-1

Module Wrap-up

Module 2.3 Learning Outcomes

- Describe the hierarchical relationship between an element, a component, and an asset
- Differentiate between corrosion protection and base metal elements within the PHA inventory
- Describe the system used to identify and categorize elements and components
- Complete element codes, IDs, and descriptions for inventory reporting

END OF MODULE

Module 3.1 Inspection Types and Reports

Corrosion Manual Training Course

Module Objectives

Module 3.1 Learning Outcomes

- List typical objectives, intervals, and scope of each primary inspection type
- Describe relationship between inspection types
- Identify readily accessible elements

Module Resources

- Chapter 2: Inspection Types
- Appendix F: Documentation and Reporting Forms

Inspection Scope and Frequency

Scope

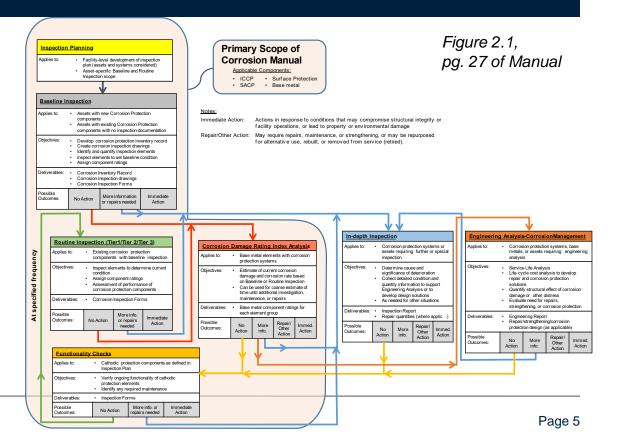
- Defines type(s) of inspections
- Describes the inspection methods and NDE techniques
- Considers site environmental conditions, rate of damage progression, anticipated design life, etc.

Frequency

- Identifies the next inspection intervals for each asset and type of inspection
- May vary based on inspection findings
- May be altered between inspections

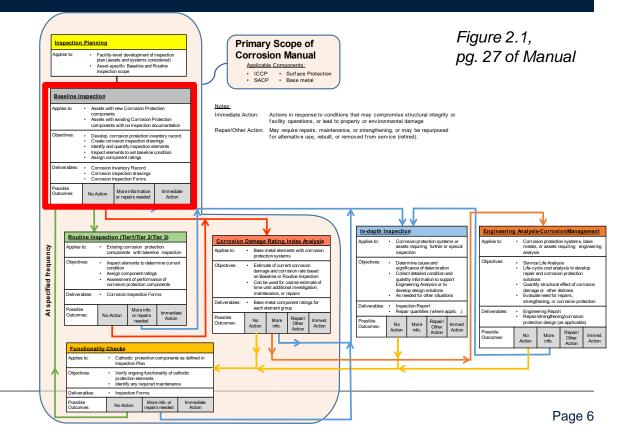
PORT HOUSTON

Defined in the Corrosion Inspection Plan


Inspection Types

- Primary Inspection Types
 - Baseline
 - Routine

ORT HOUSTON


INTERNATIONAL PORT OF TEXAS

- Functionality Checks
- *Specific to Corrosion Manual not to Maritime Structures inspections

Inspection Types – Baseline Inspection

- New or refurbished asset
- No previous inspection record
- After a change in ownership

"first Routine Inspection"

PORT HOUSTON

INTERNATIONAL PORT OF TEXAS"

Inspection Types – Baseline Inspection

Purposes

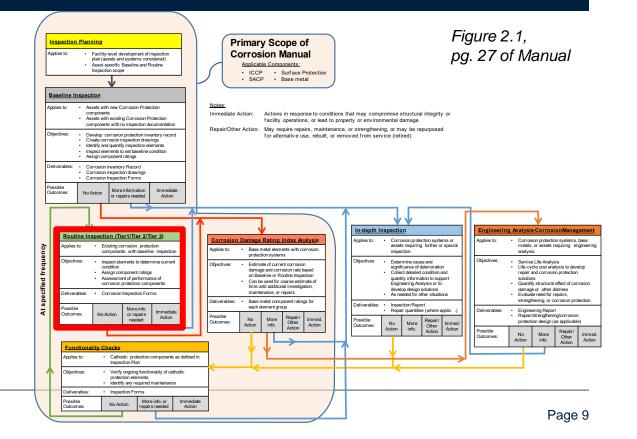
- Establish the baseline (initial) corrosion protection system inventory information
- Develop asset-specific Corrosion Inspection Plan that defines the specific inspection requirements for given asset
- Determine initial corrosion condition rating
- May involve above-water and underwater inspection

Inspection Types – Baseline Inspection

Deliverables

- Corrosion Inventory Record
- Corrosion Inspection Plan
- Baseline Inspection Summary
 - Inspection Data
- Follow-up Actions Form
- Inspection History
- Corrosion Inspection Drawings

		aritime Asset n Inventory Reco	nd	Form CMIR (VL) Barbours Curt Terrisrial - BCT Cast update: January 24, 202 Page 1 of
Property:	Barbours Cut Terminal	Asset ID:		8CT 5
Asset Type:	Wharf	Year of Original Construction:		1990
Wharf Type:	Open	Year(s) of Significa Modifications or F	lepairs':	2002, 2004, 2008, 2011
Wharf Usage:	Containerized Cargo	Date of Last inven Record Update:	tory	January 24, 2020
	Asset	Geometric Data		
Area	36 acros	Deck Elevation ab	ove MLT:	18 ft. 0 in.
Structure Length	1000 ft.	Channel Depth at	Fender:	44 ft. 6 in.
Structure Width	Deck: 108 ft. 9 in.	Channel Depth at	Buikhead	7 tt. 6 in.
	cess: Pedestrion access to structur el-side af bulkhead wall (8-foot de			
structural drawing and modifications 2002: Repair 2004: Repair 2004: Repair 2008: Repair	Structure Corr ar the west end of the Barbour's is are dated 1989, and whar com's performed at various times durin and incalient recoaring of fender in and iocalient recoaring of fender in the case rail expension joint.	Cut Terminal along truction was compli- g the service life of ystem. ystem. ystem.	the south sinted in 1993	2. Several noteworthy repairs
structural drawing and modifications 2002: Repair 2004: Repair 2008: Repair 2008: Repair 2011: Repair	nar the west end of the Barbour's is are diated 1989, and whar comp genformed at various times durin and localized recoating of fender and localized recoating of fender of the case rail inspension joint, and localized recoating of fender s and localized recoating of fender s localized recoating of fender s localized recoating of fender s	Cut Terminal along truction was comple githe service life of ystem, ystem, ystem, ystem.	the south s read is 199; the wharf in	2. Several noteworthy repairs
structural drawing and modifications 2002: Repair 2004: Repair 2008: Repair 2008: Repair 2011: Repair	nar the west end of the Barbour's is are diated 1989, and whar comp genformed at various times durin and localized recoating of fender and localized recoating of fender of the case rail inspension joint, and localized recoating of fender s and localized recoating of fender s localized recoating of fender s localized recoating of fender s	Cut Terminal along truction was compli- g the service life of ystem. ystem. ystem.	the south a reed in 199; the wharf in	. Several noteworthy repairs clude the following:
structural drawing and modifications 2002: Repair 2004: Repair 2004: Repair 2008: Repair 2011: Repair 2011: Repair 2014: Coupor	nar the west end of the Bartsour's gs are dated 1989, and whart corps performed at various times during and localized recoarting of finders and localized recoarting of finders of the crane rail expansion joint, and localized recoarting of finder and localized recoarting of finder i ladder testing program. Refere	Cut Terminal along truction was comple g the service life of ystem, ystem, ystem, nce Drawing List	the south a read in 1993 the wharf in Description	2. Several noteworthy repairs clude the following: an # Original Ovil and Electrical
structural drawing and modifications 2002 Repair 2004 Repair 2004 Repair 2008 Repair 2011 Repair 2014 Coupor Drawing Set	rar the west end of the Barbour's is are dated 1989, and where' corris performed a twinks times during the and localized recoarding of the der and localized recoarding of the der and localized recoarding of the der and localized recoarding of frender is ladder testing program. Refere Title Pavements and Utilities for Container Forminal No. 5 at	Cut Terminel along truction was comple g the service life of system, system, system, system, system, buten	the south s reed in 1990 the wharf in Phase 1 o Drawings	2. Several noteworthy repairs clude the following: 90 # Original Civil and Electrical construction Drawings for
structural drawing and modifications 2002; Repair 2004; Repair 2004; Repair 2004; Repair 2004; Repair 2001; Repair 2004; R	rear the vent and of the Barboury's generated to 2003, and what' come performed at various times down and localized receasing of Inder and localized receasing of Inder and localized receasing of Inder Inder Table Networks and Edition for Contance Lambau Contance Lambau Sector Table of Contance Lambau Sector Tables of Contance Sector Tables of Contance Sector Tables of Contance Sector Tables (Sector Contance Sector Tables) (Sector Tables) (Sector Sector Tables) (Sector Tables) (Sector Sector Tables) (Sector Tables) (Sector Sector Tables) (Sector Tabl	Cut Terminel along truction wis comple patern. ystern. ystern. ystern. oce Drawing List Date 27 Aug 1986	the south sinted in 1992 the wharf in Description Phase 1 of Drawings Original C Builthead	2. Several noteworthy repairs clude the following: an 4 Original Doll and Electrical canstruction Drawings for 4 Original Chill and Discritical
structural drawing and modifications 2002. Repair 2004. Repair 2004. Repair 2004. Repair 2004. Cosport 2011. Repair 2014. Cosport Drawing Set C107-4	ee the weet end of the Bachson', see state 1289. So advant cores performed at various times down and located recenting of traders and located recenting of traders in down the care and approximation joint. and located recenting of finators indices the second second second trade recent perspective Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tele Tel	Cut Terminel along truction wis comple tistem. ystem. ystem. noc Drawing List Date 27 Aug 1986 16 Feb 1988	the south site in 1993 the wharf in Description Phase 1 o Drawings Original C Builthead Phase 2 o Drawings	2. Several noteworthy repairs clude the following: an 4 Original Doll and Electrical canstruction Drawings for 4 Original Chill and Discritical
structural drawing and modifications 2002: Repair - 2004: Repair - 2004: Repair - 2008: Repair - 2008: Repair - 2008: Repair - 2014: Cospor Drawing Set C107-3 C107-4	ere the wert end of the Bachson's performed at various times down performed at various times down down and localized receasing of trader and localized receasing of trader in the care and anyowing of trader is address the second anyowing of the isoder testing program Performents and Utilities for Container Terminal No. 5 at Florenaric Care Phene I Sheet Tile Builthand for Whinney Family Care Phene I Sheet Tile Builthand for Whinney Container Utilities for Container Utilities No. 5 at Birthory Care Phene I Scientific Care Phene I	Cut Terminel along truction wis comple tist service life of system. system. system. Date 27 Aug 1986 36 Feb 1988 24 May 1988	the south site in 199; the wharf in Descripti Phase 1 o Drawings Original C Buildhead Phase 2 o Drawings Original C Wharf Modified	L Several inditeworthy repains clude the following: 4 Original Divil and Electrical anstruction Drawings for 4 Original Chill and Electrical



Inspection Types – Routine Inspection

- At intervals defined in Inspection Plan
- Scope of visual observations and measurements based on Inspection Plan

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS"

Inspection Types – Routine Inspection

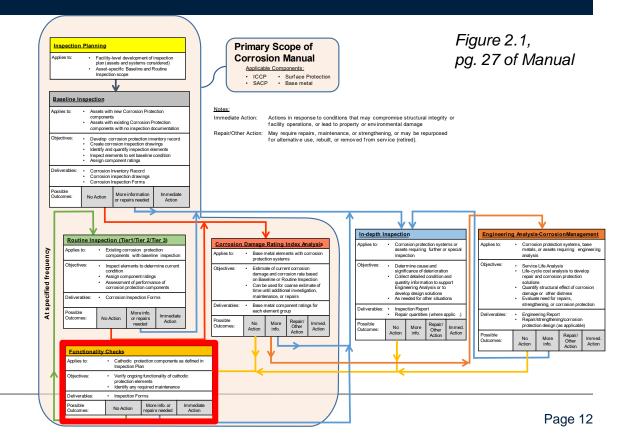
Purposes

- Inspect readily-accessible elements
- Document change(s) in assets inventory record
- Update component ratings and asset condition assessment
- May involve above-water and underwater inspection
- May include multiple tasks at different inspection intervals
 - Above water (3 years), underwater (6 years)

Inspection Types – Routine Inspection

- Routine Inspection Deliverables
 - Inspection Summary
 - Inspection Data
 - Follow-up Actions Form
- Modified Baseline Insp. Deliverables
 - Corrosion Inventory Record
 - Corrosion Inspection Plan
 - Inspection History, Drawings

			Maritime Asset Islon Inspection Plan	Form CMP (V1.0 Ractiours Cut Terminal – RCT Last sphare: Ormiber 11, 202 Poge 1 of
Property:	Barbours Cut Te	erminal	Asset ID:	BCT 5
Asset Type:	Wharf		Year of Original Construction:	1990
Wharf Type:	Open		Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011
Wharf Usage:	Containerized 0	Cargo	Date of Most Recent Inspection:	April 2020 (above-water) August 2030 (below-water)
			Inspection Plan	
unctionality	, voltage output, and	Frequency	= 1 year)	ds and structure (3 to the funder
o o • Menso metal o adequi	Inspect for loose of Remove corrosion continuity are and record on/off elements in general ate to criterion in NA At a menimum, ten Impection:	Is for structur or broken win product from structure to accordance w VCE SP0169. ting should b	e and negative leads have good is of structure and negative corn electrical connections. If recess electrolyte potentials to determ the Text Nethod 3 of NACE TMO e performed at the same five to	rections any to provide electrical line polarization decay of bose 497 to determine if CP is cations during the Baseline
			ir locations of negative structure simately midway between negat	
Tier 1 Tasks (i	nspection Frequen	cy = 3 years)	
 Perform record those in 	m non-destructive in ed on Corrosion Eler during the Baseline I UT Measurements manufacturer	easurements nent Inspects repection for L: Prepare Un		Measurement locations are stained from same locations as SP 11, or as required per device
		Required In	(in the second	
Element	Exposure Zone		inductions.	
	Exposure Zone Soll	Visually ob	ierve encasement concrete. Cra	cking may be indicative of
Element CS Tie Rod		Visually ob corrosion d Ultrasonic	erve encauement concrete. Cra Intress of tie rod. Thickness Measurements: 8 loca	tions (each at flange and web)
Element	Sail	Visually ob corrosion d Ultrasonic Coating Thi Ultrasonic Coating Thi	erve encasement concrete. Crac latress of tie rod. Trickness Measurements: 8 loca chress and/or Adhesion Measur Prickness Measurements: 12 loc chress and/or Adhesion Measur	tions (each at flange and web) ements: 8 locations ations (each at flange and web)



Inspection Types – Functionality Checks

- Intervals defined in Inspection Plan (6 months/ 1year)
- More frequent than Routine Inspections
- Simple checks

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS"

Inspection Types – Functionality Checks

Purposes

- Verify functionality of CP systems
 - Six-month or 1-year intervals (or as specified in the inspection plan)
- Provides quantitative data to monitor performance of CP systems over time
- Does not include underwater inspection
- Does not include visual inspection of every element

Inspection Types – Functionality Checks

Deliverables

- Updated Routine Inspection Summary
 - New Routine Inspection Data, additional functionality checks
- Updated Inspection History

5		Maritime Asset Corrosion Inspection Plan	Form CMIR (VL.1) Barbourn Ccz Terminal – BCT 5 Lant update: January 27, 2020 Page 3 of 2
Property:	Barbours Cut Te	orminal Asset ID:	BCT S
Asset Type:	Whart	Year of Original Construction:	1990
Wharf Type:	Open	Year(s) of Significan Modifications or Ro	
Wharf Usage:	Containerized (Date of Most Receiption:	nt NA
		Inspection Plan	
Functionality C	hecks (Inspection	Frequency = 2 months)	
 Measur metal e adoqua 	e and record on/off lements in general i te to criterion in NA At a minimum, tes Inspection: Bays 5, 2	accordance with Test Method 3 of N ICE SP0169.	ne five locations during the Baseline atructure connections)
 Perform Perform Measur obtaine 	n the following non- ement locations are of from same location UT Measurements	Icty = 3 years) of all accessible corrosion protection destructive evaluation measurement encorded on Corrosion Elament Ins on as those during the Baseline Insp : Prepare Uncodend Surfaces per 55 Measurements: Prepare Surfaces per	rts for elements as specified below. pection Forms. Readings should be rection for comparable results. PC-SP 11
Element	Exposure Zone	Required Inspections ³	2
CS Tie Rod	Soil Atmospheric	corrosion distress of tie rod. Ultrasonic Thickness Measuremen	rete. Cracking may be indicative of its: 8 locations n Measurements: 8 locations

Inspection Tasks & Intervals

Task Classification	Inspection Interval ^[Note 2]	Example Inspection Tasks ^[Note 1]
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, power consumption, shunts, etc.)
Checks ^[Note 3]	1 year	Measure and record on/off structure-to-electrolyte potentials (and/or decay potentials) for cathodic protection systems
		Verify accessible negative lead-to-structure connections are intact
Tier 1		Perform above water visual assessment
Routine	3 years	Obtain above-water thickness measurements of base metal elements
Inspections		Obtain above-water coating thickness and/or adhesion measurements
		Level I underwater visual inspections of anodes
Tier 2 Routine	6 years	Level II underwater cleaning and visual inspection of anodes and base metal elements
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements, coatings, and anodes
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes

Table 2.1. Guidelines for Maximum Inspection Intervals

Inspection Tasks & Intervals

Element Classification	Exposure Zone	Test Intervals ^[Note 1, 2]
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 50 LF or 20% of elements Coating Thickness and/or Adhesion: Every 50 LF or 20%
Critical	Submerged	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%
	Soil	As required
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%
Typical	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%
	Soil	As required
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%
Redundant	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%
	Soil	As required

Table 2.2. Recommended Minimum NDE Testing Intervals

Level of Effort

- Corrosion Manual is mostly focused on inspecting and collecting data from readily accessible elements:
 - Exposed to either open water or open atmosphere
 - Do not require removal of overburden or other elements
 - Are not considered confined spaces
 - May be accessed by walking, boat, lift, scaffold, or diving
- Team leader may recommend variations on an assetspecific basis

Inspection Conditions

- Elements obscured by obstructions can be skipped for one inspection cycle if:
 - Total area does not exceed 10% and no significant distress suspected
- Inspections may reveal unserviceable conditions
 - Above-water inspection may be truncated, or underwater inspections deferred
 - PHA approval required, based on observed above-water conditions

Wrap-Up: Three Inspection Types

- Primary Scope of Corrosion Manual:
 - Baseline Inspection
 - Routine Inspections
 - Functionality Checks
- Not Primary Scope of Corrosion Manual :
 - Special Inspections

END OF MODULE

Module 3.2

Inspection Documentation

Corrosion Manual Training Course

Module Objectives

Module 3.2 Learning Outcomes

- Describe required documentation for each inspection type
- Outline typical information within each inspection deliverable
- Identify the information required on standard inspection drawings

Module Resources

- Chapter 8: Documentation and Reporting
- Appendix F: Documentation and Reporting Forms
- Appendix G: Corrosion Inspection Drawings
- Appendix H: Reference Information

Inspection Deliverables

Deliverable	Type of Inspection		
	Baseline	Routine	
Corrosion Inventory Record	Yes. Includes initial generation of document.	Revise only if change identified	
Corrosion Inspection Plan	Yes. Includes initial generation of document.	Update	
Standard Corrosion Inspection Drawing Set	Yes. Includes initial generation of document.	No	
Corrosion Element Inspection Forms	Yes. Includes initial generation of document.	Yes. Relies on inspection forms generated by Baseline.	
Corrosion Inspection History	Yes. Includes initial generation of document.	Update	
Corrosion Inspection Summary	Yes	Yes	
Corrosion Inspection Data	Yes	Yes	
Follow-Up Action Form	Yes	Yes	
Submission into PHA database	Yes	Yes	

Table 8.2. Deliverables for Standard Inspections

5	Corr	Maritime Asset osion Inventory Record	Form CMIR (V1.0) Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 1 of E
Property:	Barbours Cut Terminal	Asset ID:	BCT 5
Asset Type:	Wharf	Year of Original Construction:	1990
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011
Wharf Usage:	Containerized Cargo	Date of Last Inventory Record Update:	January 24, 2020
	A	sset Geometric Data	
Area:	36 acres	Deck Elevation above MLT:	18 ft. 0 in.
Structure Length:	1000 ft.	Channel Depth at Fender:	44 ft, 6 in.
Structure Width:	Deck: 108 ft. 9 in.	Channel Depth at Bulkhead:	7 ft. 6 in.

Recommended Access: Pedestrian access to structure top side and landside bulkhead via catwalks; boat access required to channel-side of bulkhead wall (8-foot design clear span between drilled shafts).

Structure Corrosion Protection History

BCT 5 is located near the west end of the Barbour's Cut Terminal along the south side of the channel. The original structural drawings are dated 1989, and wharf construction was completed in 1992. Several noteworthy repars and modifications performed at various times during the service life of the wharf include the following:

- 2002: Repair and localized recoating of fender system.
- 2004: Repair and localized recoating of fender system.
- 2004: Repair of the crane rail expansion joint.
- 2008: Repair and localized recoating of fender system.
- 2011: Repair and localized recoating of fender system.
- 2014: Coupon ladder testing program

Reference Drawing List			
Drawing Set	Title	Date	Description
C107-3	Pavements and Utilities for Container Terminal No. 5 at Barbour's Cut - Phase I	27 Aug 1986	Phase 1 of Original Civil and Electrical Drawings
C107-4	Sheet Pile Bulkhead for Wharves Nos. 5 and 6 at Barbour's Cut Terminal	16 Feb 1988	Original Construction Drawings for Bulkhead
C107-5	Pavements and Utilities for Container Terminal No. 5 at Barbour's Cut - Phase II	24 May 1988	Phase 2 of Original Civil and Electrical Drawings

- Structure Identification and Background/Dates
- Geometric Data
- Corrosion Protection History

Maritime Asset Corrosion Inventory Record Form CMIR (V1.0) Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 2 of 8

Drawing Set	Title	Date	Description
C107-12	Repair of Fender System at Wharf No. 5	5 Nov 2002	Fender Repair Drawings
C107-13	Repair of Fender System and Potable Water Line	23 Feb 2004	Fender and Utility Repair Drawing
C160-60	Crane Rail Repair	30 Aug 2004	Crane Rail Expansion Joint Repair Drawings
C60-D02-002	Fender System Maintenance at Barbours Cut Terminal	16 Oct 2008	Fender Repair and Maintenance Drawings
C60-D02-005	Annual Fender System Maintenance at Barbours Cut Terminal 2012	3 Oct 2011	Fender Repair and Maintenance Drawings

Asset Exposure Zones

The following exposure zones have been identified at this site, the specific height of the zones and exposure effects have been estimated based on review of environmental conditions and data.

Exposure Zone	Elevation versus MLLW	Elements
Atmospheric	+3.25 ft. or greater	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Splash	+1.25 to +3.25 ft.	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Tidal	+0 to +1.25 ft.	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Submerged	0 ft. or less	CS Bulkhead Wall, CS Fender Piles
Soil	Below the mudline toward the waterside of the bulkhead and below the pavement on the landward side of the bulkhead	CS Tie Rods, CS Bulkhead Wall, CS Fender Piles

Asset Environmental Conditions			
Global Zone	Constituent	Values	
Site	Temperature	January: 54°F, February: 57°F, March: 63°F, April: 70°F, May: 77°F, June: 82°F, July: 84°F, August: 84°F, September: 80°F, October: 72°F, November: 63°F,	
Eito	Balation Universiden	December: 56°F, Annual: 70°F	

 Relevant reference drawings (original, repairs, rehabilitation, etc.)

Exposure Zones

 Environmental Conditions (reference Appendix H)

Form CMIR (V1.0)

Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 4 of 8

Maritime Asset Corrosion Inventory Record

	Impressed Current Corrosion Protection Elements	
Component / Element(s)	Description	
Anodes	Anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.	
- OTH Anode	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes. Anodes are installed at Elev3.0 and -12.0'.	
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note drawings indicate five rectifiers, but only three were installed.	
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside of the bulkhead wall adjacent to light poles 8 through 12.	
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and is protected by PVC conduit to the landside of the bulkhead wall.	
- CU Wiring	No. 6/7 copper wiring connects the corrosion protection system. Positive leads run to the bulk anodes and negative leads are connected to the fender system and bulkhead wall. Negative leads connect the copper conduit to the top fender wale beam and bulkhead wall in three and six locations, respectively.	
- PVC Protection	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.	
	Base Metal Components and Elements	
omponent / lement(s)	Description	
ritical		
- CS Tie Rod	Tie rods, 3-3/4 inch diameter, extending from buikhead wale beam to dead man spaced at approximately 15 feet on center and encased in Schedule 40 PVI Casings.	
	 Installed in 1990, no documented modifications or repairs. Design Cross-Sectional Area = 11.0 in² 	

Typical

- CS Bulkhead Wall

- Vall BZ-20 steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown at -5.00'.
 - Installed in 1990, no documented modifications or repairs. BZ-20
 - Design Thickness = 0.551 in (flange), 0.394 in (web/wall)

- List of components and elements
 - Corrosion Protection
 - ICCP
 - SACP
 - Surface Protection
 - Base Metals
 - Design thickness

5	Maritime Asset Corrosion Inventory Record	Form CMIR (VLO) Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 6 of 8
	Figures	
Barbours Gut		ALTS CONTRACTOR

Figure 1. Asset Location

Location Map(s)

- Representative Photograph(s)
- Drawings (Partial Plans or Sections)

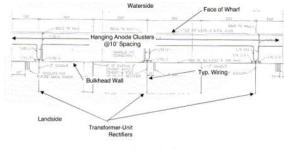
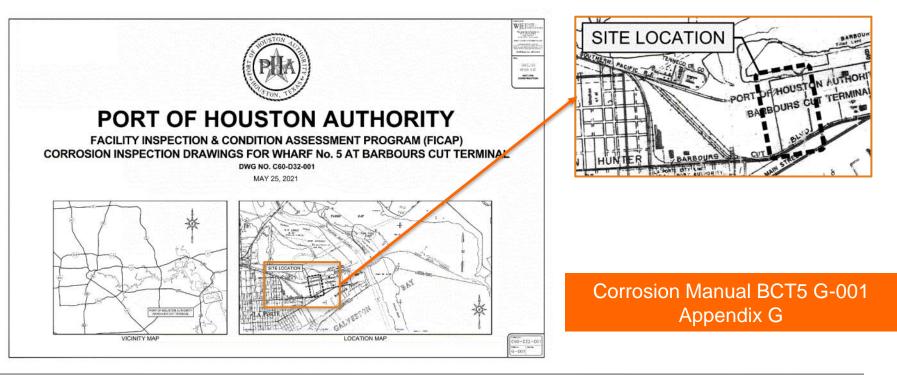
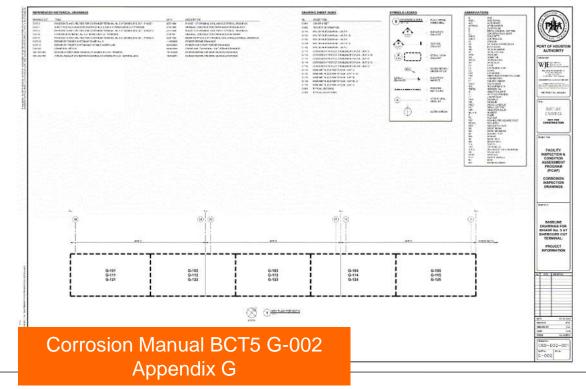


Figure 3. Typical Partial Plan of Structure.

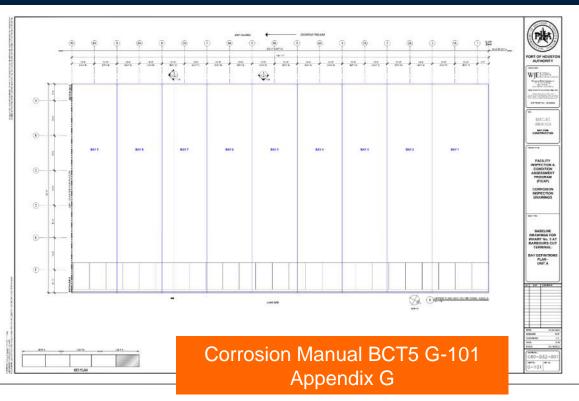

Corrosion Inspection Drawings

- Provides structure layout, bay labels, locations and IDs of all elements
- As-built of current configuration
- PHA CAD standards
- Plans, Section, and Elevation Views

Sheet Number	Sheet Description	Information Included
G-001	Title	Asset name PHA drawing number Date of drawing set Vicinity map Asset location map
G-002	Project Information	Sheet Index Key Plan, referencing asset plan sheets (i.e. G-1XX). The Key Plan should have notes/labels consistent with structure history on Corrosion Inventory Record form (i.e., indicate significant modifications, repairs, expansions, partial demolitions). List of Referenced Historical Drawings Definitions of Symbols Definitions of Abbreviations
G-10(x)	Bay Plan(s)	Plan view of topside of structure. Asset may be broken into multiple pages. Bays outlined and denoted per Corrosion Manual scheme (see Section 8.4.1). Grid lines, based on historic drawings if possible. Overall dimensions of bays. North Arrow Channel Designation
G-11(x)	Corrosion Protection Element Plan(s)	Corrosion Protection elements individually outlined and labeled.* Drawn as plan views. Applicable views may include the superstructure and deck elements cut at the structure topside and/or the substructure and fender elements cut below the deck level. Sheets to be ordered from Upper Plan to Lower Plan.
G-12(x)	Base Metal Element Plan(s)	Base Metal elements individually labeled.* Drawn as plan views. Applicable views may include the superstructure and deck elements cut at the structure topside and/or the substructure and fender elements cut below the deck level. Sheets to be ordered from Upper Plan to Lower Plan.
G-20(x)	Typical Sections	Cross-sections through representative portions of wharf. Include a separate cross-section for significant changes in structure configuration (e.g., change in pile type, arrangement of beams, width of structure, etc.). Provide elevations for Top of Deck; Mean Low Tide. Label typical elements with name and element code (e.g., Polyurethane Coating (CT-PU)).
G-30(x)	Typical Elevations	Elevation view of typical bay(s), as viewed from the channel. Include major corrosion protection and base metal Elements. Label typical elements with name and element code (e.g., Polyurethane Coating (CT-PU)).



* See Section 8.4.2 for Element labeling and identification scheme

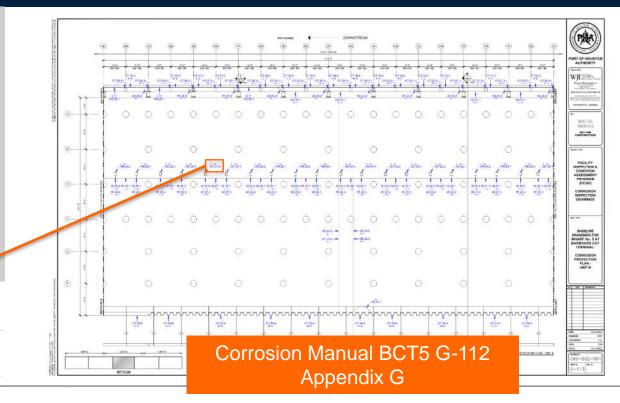


- Key Plan (channel at top)
- Referenced Historical Drawings
- Drawing Sheet Index

- Bay Definitions
- Bay Numbering
 - Upstream to
 downstream
 - Letters for differing structural systems

- Corrosion
 Protection Plan
- Schematic layout of corrosion elements
- Element IDs labelled

Element

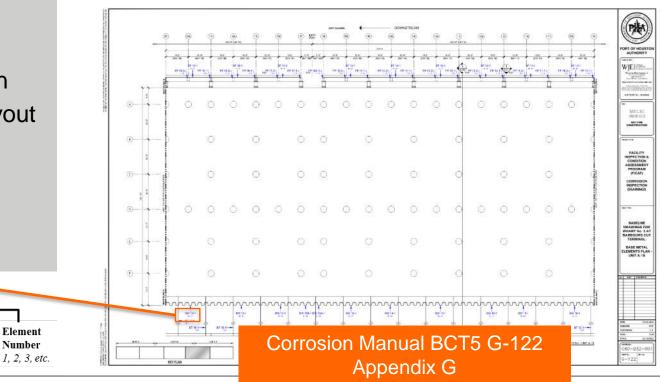

Number

1, 2, 3, etc.

Element CodeBay NumberDT, PI, WL, etc.1, 2A, 2B, etc.

ORT HOUSTON

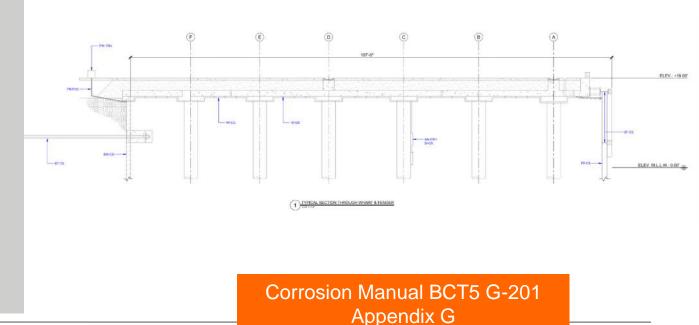
FRNATEONAL PORT OF TEXAS


- Base Metal
 Elements Plan
- Schematic layout of base metal elements

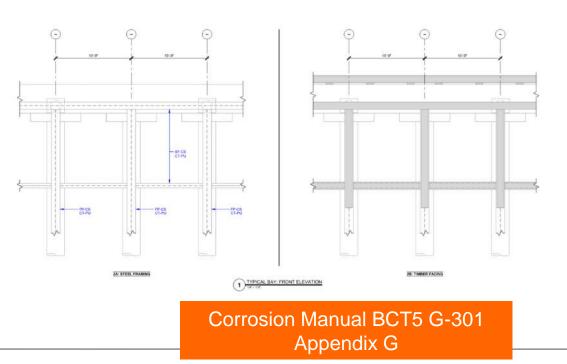
BW19-1

Bay Number

1, 2A, 2B, etc.


 Element IDs labelled

Element Code


DT, PI, WL, etc.

- Typical Sections
- Cross-sectional layout of corrosion and base metal elements
- Does not include element IDs

- Typical Elevations
- Front view(s) of asset
- Front view layout of corrosion and base metal elements
- Does not include element IDs

Corrosion Inspection History

- Log of all inspections
- Includes previous ratings

5			aritime Asset ection History	Form CMIH Barbours Cut Terminal – Last updated: January 27, Page	BCT 20
Property:	Barbours Cut Terr	minal	Asset ID:	BCT 5	
Asset Classification:	Wharf		Year of Original Construction:	1990	
Inspection Frequency:	Ref. Inspection Pl	an	Year(s) of Significant Modifications or Repairs:	2002, 2004, 2008, 2011	
	Dates of	Inspections,	Asset, and Component I	Ratings	
Date:		1/24/2020			
Inspection Type		Baseline			
Inspection State	s	Completed			
Inspection Firm	: Above Water	WJE			
Inspection Firm	: Underwater	Rio			
Corrosion Cond	ition Rating (CCR)	70			
Corrosion Prote	ction (CP)	38			
ICCP Function	ality	4			
ICCP Visual		4			
SA Functional	lity	NA			
SA Visual		NA			
Surface Prote	ction	3			
Base Metal (BN	1)	32			
Critical		5			
Typical		4			
Redundant		4			

Corrosion Inspection Summary

- Inspection Type
- Scope
- Date
- Team Members
- Seal of Responsible Engineer

5	Maritime Asset Corrosion Inspection Summary		Form CMIS (V1.0) Barbours Cut Terminal – BCT 5 October 6, 2020 Page 1 of 20	
Property:	Barbours Cut Terminal	Asset ID:	BCT 5	
Inspection Type	⊠ Baseline □ Routine □ In-Depth	Inspection Date(s):	April 23-24, 2020 (above water August 4-5, 2020 (under water	
Scope of Inspection	Entire Asset, Above Water and Under Water			
Inspection Firm(s):	Prime: Wiss, Janney, Elstner Associates,	nc.		
	Underwater: Rio Engineering, Inc.			
	Other (role): N/A			
Reported By:	S. Foster, P.E.	Report Date:	October 6, 2020	
Corrosion Manual Version/Date:	Rev. 0, October 2022	Variances from CM Procedure:	N/A	

Seal of Responsible Engineer	
I hereby certify this inspection was performed under my direct supervision and control and to the best of my professional knowledge complies with the Corrosion Manual and applicable codes. Signed:	
Name:	
Texas License No.:	
Date: Expires:	Seal

Inspection Team Members

Project Manager: Stephen Foster Ur Inspection Team Leader(s): Stephen Foster Ur Inspection Team Member(s): Casey Jones, Kyle Myers, Lane Thompson

Underwater Team Leader: Joe Starkey Foster Underwater Team Member(s): Jones, Kyle Myers,

Corrosion Inspection Summary

- Asset Condition
 - Corrosion Condition Rating
 - CP Rating
 - Base Metal Rating
- Component Ratings by element group and Comments
- Photographs

Maritime Asset Corrosion Inspection Summary Form CMIS (V1.0) Barbours Cut Terminal – BCT 5 October 6, 2020 Page 2 of 20

Overall Asset Condition

Overall, the base metal elements were in fair condition with minor to moderate measured section loss. The estimated corrasion rates for the buikhead wall, fender piles, and fender support framing were all ranked with a damage index of fair to good. There are, however, several localized areas of distress that should be prepared and recorded to maintain the current condition of the assets.

The corrosion protection systems appeared to be functioning as intended for the buikhead wall, but not the fender piles. Current output and structure-to-electrolyte potential measurements indicate that the system is operating as intended and providing sufficient cathodic protection to the buikhead wall. The bond wires to the fender piles were all severed and non functional.

ICF (Functional) Companent Rating = 4 (Deduction = 4) ICV (Visual) Companent Rating = 4 (Deduction = 2) SPR Rating = 3 (Deduction = 8) $CP = 60 - 1.6 \times (ICF + ICV + COA) = 60 - 1.6 \times (4 + 2 + 8) = 38$

 $\begin{array}{l} CR \ Rating = 5 \ (Deduction = 3) \\ TYP \ Rating = 4 \ (Deduction = 3) \\ RED \ Rating = 4 \ (Deduction = 2) \\ BM = 40 \ (CR + TYP + RED) = 40 \ (3 + 3 + 2) = 32 \end{array}$

CCR = CP + BM = 38 + 32 = 70

The overall corrosion condition rating (CCR) for BCT 5 is 70.

Impressed Current Corrosion Protection Elements		
Element(s)	Rating	Comments
Anodes	4	Limited moderate marine growth or section loss. Most
 OTH Bulk Anode 	4	elements and their attachment are sound and functional purpose/use of the component is not affected.
DC Power Supply	4 (Functional)	All three rectifiers are functional, proper gage readings and DC
	4 (Visual)	outputs were verified. PW5-1 was turned off upon arrival of
- TRU DC Power Supply	4 (Funct)	the inspector, however, it was deemed functional when turned on.
	4 (Visual)	
		All six "on" potentials of the bulkhead wall were measured as
		more negative than -850 mV vs. CSE. All of the "Instant off" potentials were measured as more negative than -850mV vs.
		CSE and more positive than -1250 mV.
		Measured potentials at the fender did not meet any
		established criteria due to disconnection of the bond wires.
Wiring and Protection	3	 Wiring and protection was in satisfactory condition.
 CU Wiring 	3	Negative lead wiring from the bulkhead wall appeared to be in
		satisfactory condition with minor corrosion at the
		connections. Positive lead wiring to the anodes exhibited

Corrosion Inspection Summary

- Base Metal Ratings
 - Section Loss
 - Estimated
 Corrosion Rate
- Figures
 - Representative

Conditions

PORT HOUSTON

TERNATIONAL PORT OF TEXAS

NA Inaccessible. Rated as 5 for scoring purposes due to age		111121	Element
	NA	ıl	Critical
NA	NA	CS Tie Rod	- (
4	4	al.	Typical
d Wall 5 The bulkhead wall was in satisfactory condition with mi corrosion at the seams and minimal general section los mostly in the splash and tidal zone. In 30 years of servi average section loss was approximately 5 to 6%.	Wall 5	CS Bulkhead Wall	-
Section loss: (>2% to ≤ 10% satisfactory)			
Estimated Corrosion Rate: (Satisfactory <2mpy) Piles 4 Impact damage and corrosion of piles was observed ne waterline, with an average section loss of approximatel near the ends of the flanges. Webs typically have minin section loss apart from stiffeners Overall, fair amount o section loss with estimated corrosion rate between 6 a mpy.	es 4	CS Fender Piles	
Section loss: (Fair <10%)			
the waterline, particularly at connections.	annig 4	CS Support Framing	- (
Estimated Corrosion Rate: (Fair, 6 < x ≤ 11 mpy) 4 Framing 4 Impact damage and corrosion of framing was ol		adant CS Support Framing	Redunda — (

Figure 7. Connection bond from the bulk head wall to the fender piles, no major visible signs of corrosion or distress.

Figure 8. Negative wire connection from rectifier to bulkhead wall, showing visible signs of corrosion at connection point.

Follow-Up Action Form

- Priority
 - High Priority
 - Routine
- Component/Element
- Condition
- Reason for Action
- Recommended Action

Follow-Up Action Form

- Follow-Up Actions Log
 - Summary of items
 - Responsible party

Maritime Asset Follow-up Actions Form MSFA (V1.1) Northside Turning Basin – CD 25 July 30, 2021 Page 5 of 5

Follow-up Actions Log					
ltem No.	Priority	Recommended Action	Assigned To	Assigned By	Date
1	Priority	Replace anodes and adjust rectifier current outputs to provide adequate CP of base metal elements	рна	WJE	July 30, 2021
2	Routine	Repair electrical bond wires between fender piles and support framing	РНА	WJE	July 30, 2021
3	Routine	Clean and coat fender pile and support framing elements in the tidal and splash zone.	РНА	WJE	July 30, 2021
4	Routine	Monitor coating defects of bulkhead wall in future inspections.	РНА	WJE	July 30, 2021

Baseline Inspection Deliverables

5	Corr	Maritime Asset osion Inventory Record
Property:	Barbours Cut Terminal	Asset ID:
Asset Type:	What	Year of Original Construction
Wharf Type:	Open	Year(s) of Significant Modifications or Rep
Wharf Usage:	Containerized Cargo	Date of Last invento Record Update:
	A	saet Geometric Data
Area	36 acres	Deck Elevati
Charles and the second second	1000 5	and the second s

Structure Length:	1000 ft.	Channel	De
Structure Width:	Derik: 108 ft. 9 in.	Channel	De
	Prdestrion secons to structu- de of inulthead wall (8-foot de		

Structure Corrosion Prote

Reference Drawing

BCT 5 is located near the west end of the Barbour's Cut Terminal structural drawings are dated 1980, and wharf construction was and modifications performed at various times during the service

- 2002: Repair and localized recoating of fender system. · 2004: Repair and localized recoating of fender system
- · 2004: Repair of the crone rail expansion point.
- · 2008 Regain and localized recoating of fender system

Terminal

Drawing Set Title

C107.4

C107-3

C1074

C107-1

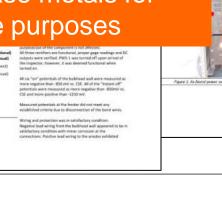
- 2011: Repair and localized recoating of fender system.
- + 2024: Chupon ladder testing program

	0	prosion Inspection Plan	Bartanaris Cati Terrerusi – BC Last update: October 11, 2 Page 2 (
Property:	Barbours Cut Terminal	Asset ID:	act's
Asset Type	What	Year of Original Construction	1990
Wharf Type:	Ouen	Year(s) of Significant Modifications or Repairs?	2002, 3004, 2008, 2011
Wharf Usage:	Containerized Cargo	Date of Most Recent Inspection	April 2020 (above-water) August 2020 (below-water)
2002007/07/0		Inspection Plan	

output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year) rtion of the nine weld connections between the negative leads and structure (3 to the fer

5	Maritime Asset Corrosion Inspection Summary	Form CMEL (VLD Barboors Cut Terretral - BCT October 6, 203 Page 3 of 2
	Overall Asset Condition	


The corrasion protection systems appeared to be functioning as intended for the buildhead wall, but not the

fender siles. Current outsut and structure to electrolice extential measurements indicate that the success is

operation as intended and possisling sufficient catheolic protection to the buildend well. The band wires to the

Provide a complete asset file regarding corrosion protection and base metals for inspection and database purposes

Routine Inspection Deliverables

- Update Baseline
 Inspection forms
- New Inspection Summary & Data & Follow-Up Action Form

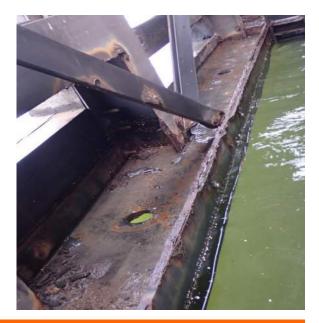

Deliverable	8.2. Deliverables for Standard Inspections Type of Inspection		
Denverable	Baseline	Routine	
Corrosion Inventory Record	Yes. Includes initial generation of document.	Revise only if change identified	
Corrosion Inspection Plan	Yes. Includes initial generation of document.	Update	
Standard Corrosion Inspection Drawing Set	Yes. Includes initial generation of document.	No	
Corrosion Element Inspection Forms	Yes. Includes initial generation of document.	Yes. Relies on inspection forms generated by Baseline.	
Corrosion Inspection History	Yes. Includes initial generation of document.	Update	
Corrosion Inspection Summary	Yes	Yes	
Corrosion Inspection Data	Yes	Yes	
Follow-Up Action Form	Yes	Yes	
Submission into PHA database	Yes	Yes	

Table 8.2. Deliverables for Standard Inspections

Routine Inspection

- 3-year or 6-year cycle
- Inspect readily-accessible elements
- Perform repeatable measurements
- Document change in asset's inventory record
- Update component ratings and asset condition assessment

Useful in Providing Trends for Asset Management

Routine Inspection Deliverables

- Updated Inventory Record or Drawings (if needed)
- Updated Inspection Plan (if needed)
- (New) Inspection Summary
- (New) Inspection Data
- (New) Follow Up Actions

Maritime Asset Form CMIR (V1.1) Corrosion Inventory Record and Inspection Plan Last update: May 23, 2019 Pare 1 of 11

Property:	Barbours Cut Terminal	Asset ID:	BCT 5
Asset Type:	Wharf	Year of Original Construction:	1990
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011
Wharf Usage:	Containerized Cargo	Date of Last Inventory Record Update:	May 23, 2019

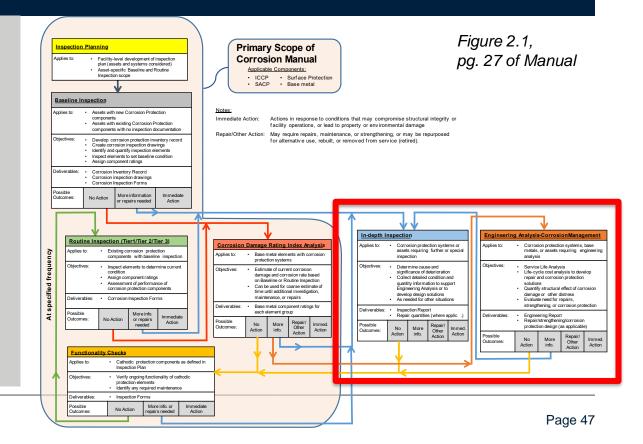
Asset Geometric Data							
Area: 36 acres Deck Elevation above MLT: 18 ft. 0 in.							
Structure Length:	1000 ft.	Channel Depth at Fender:	44 ft. 6 in.				
Structure Width:	Structure Width: Deck: 108 ft. 9 in. Channel Depth at Bulkhead: 7 ft. 6 in.						

Recommended Access: Pedestrian access to structure top side and landside bulkhead via catwalks; boat access required to channel-side of bulkhead wall (8-foot design clear span between drilled shafts).

Structure Corrosion Protection History

BCT 5 is located near the west end of the Barbour's Cut Terminal along the south side of the channel. The original structural drawings are dated 1989, and wharf construction was completed in 1992. Several noteworthy repairs and modifications performed at various times during the service life of the wharf include the following:

- 2002: Repair and localized recoating of fender system.
- 2004: Repair and localized recoating of fender system.
- 2004: Repair of the crane rail expansion joint.
- 2008: Repair and localized recoating of fender system.
- 2011: Repair and localized recoating of fender system.


Special Inspections / Refined Analysis

- 1. Objective and Scope
- 2. Methodology
- Record of observations/ data
- 4. Interpretation of observations/data
- 5. Recommendations
- 6. Summary

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS

 Seal of Responsible Professional

Review Quiz

- Which type of an inspection best describes acquiring typical corrosion related information for tracking of corrosion performance over time? Select the best answer
 - Baseline
 - Routine Inspection
 - Special

What are the required unique deliverables for a Routine Inspection?

- Inventory Record
- Inspection Plan
- Inspection Drawing Set
- Element Inspection
 Forms
- Inspection History

- Inspection Summary
- Inspection Data
- Follow Up Action Form
- Submission to PHA
 Database

- On which form can you find the information regarding Exposure Zones and Environmental Conditions?
 - Follow-Up Action Form
 - Inspection Drawing Set
 - Inspection Summary

Inventory Record

On the standard inspection drawings, the asset is to be oriented so that the channel is on which side of the sheet?

- Bottom
- Left
- Right

END OF MODULE

Module 4.1

Element Condition Codes and Condition States

Corrosion Manual Training Course

Module Objectives

Module 4.1 Learning Outcomes

- Identify and quantify damage and deterioration conditions in corrosion protection and base metal elements
- Characterize severity of damage for corrosion and base metal elements using the four predefined condition states
- Understand use of visual and quantitative data for determining element conditions

Module References

- Chapter 3: Elements and Element Conditions
- Chapter 8: Documentation and Reporting
- Appendix F: Documentation and Reporting Forms

Element Condition Codes

Listed by

- Component
- Element
- Material
- Condition
- Appendix E

	Component Elements
C Powe	r Supply
Code	Condition Name
ACIN	Error in AC Input
BATT	Condition of Battery
DISP	Error in Output Display Panels
ELEC	Condition of Electrical Components
LABL	Condition of Labels
MISS	Missing
OUTP	Error in DC Output
VAND	Environmental / Vandalism

Sacrificial Anode Cathodic Protection (SACP) Component Elements

Code	Condition Name				
ABWJ	Abrasion/ wear				
CRKJ	Cracking				
DISJ	Jacket Distortion				
IMPT	Impact Damage				
MISS	Missing				

Surface Protection Component Elements

Code	Condition Name
ADHS	Adhesion
CHLK*	Chalking
GALV*	Galvanized Zinc Coating
FRPW*	Fiber-reinforced polymer / plastic wraps
PEEL*	Peeling/ bubbling/ cracking
THCK	Thickness
WEAR*	Wear
WETH*	Weathering Steel Patina
Repeated 1	from FICAP Maritime Structures Manual

Base Metal Component

Metal Material					
Code	Condition Name				
CORR	Corrosion (visual / qualitative)				
SXLS	Section loss				

ICCP and/or SACP Component Elements

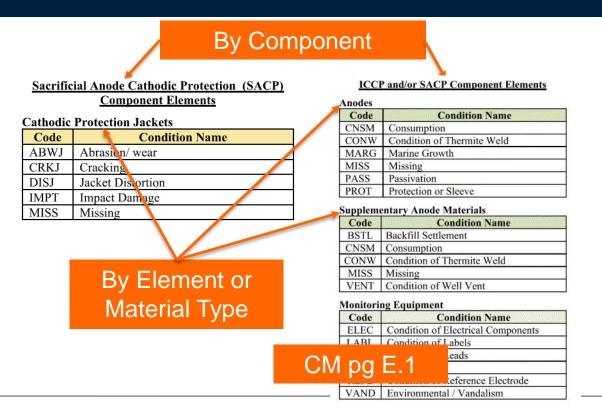
Code	Condition Name
CNSM	Consumption
CONW	Condition of Thermite Weld
MARG	Marine Growth
MISS	Missing
PASS	Passivation
PROT	Protection or Sleeve
BSTL	Backfill Settlement
Code	Condition Name
	Consumption
CONW	Condition of Thermite Weld
MISS	Missing
VENT	Condition of Well Vent
Ionitori	ng Equipment
Code	Condition Name
ELEC	Condition of Electrical Components
LABL	Condition of Labels

LEAD Condition of Leads MISS Missing REFE Condition of Reference Electrode VAND Environmental / Vandalism

Wiring and Protection

Code	Condition Name
CNSP	Connection / Splice Distress
CRKP	Cracking of Conduit
INSU	Condition of Insulation
MISS	Missing
WIRE	Condition of Wiring

CP Supports


Code	Condition Name
BASK	Condition of Submerged Anode Baskets
CONS	Connection Distress to Structure
MISS	Missing
SUPP	Condition of Support Elements

Element Condition Codes

- Four letter code, describes type of:
 - Damage
 - Deterioration
 - Defect
- Specific to each individual element
- Similar to FICAP Structures

PORT HOUSTON

- Four Condition States
 - CS1 (Good)
 - CS2 (Fair)
 - CS3 (Poor)
 - CS4 (Severe)

Similar to FICAP Structures

					Conditio	on States	
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
s	BSTL	Backfill Settlement	Settlement or improper compaction of anode well backfill.	No visible settlement.	Minor settlement observed.	Minor to moderate settlement or poor consolidation observed.	Moderate to major settlement or poor consolidation observed, affecting localized resistivity of the anode bed/well.
ateria	CNSM	Consumption	Consumption of anode	<10% consumed by weight	10-50% consumed by weight	51-75% consumed by weight	>75% consumed by weight
tary Anode Materials	CONW	Condition of Thermite Weld	Condition of thermite weld connecting anode to the wiring.	No connection distress; connection is in place and functioning as intended.	Minor distress without distortion is present, but connection is in place and functioning as intended.	Cracked weld; assessment has determined electrical connection has not been compromised.	Cracked weld resulting in electrical isolation of the anode.
Supplementary	MISS	Missing	Element intended to be in place is missing. Does not apply to elements that have been intentionally removed as part of a modification.	Element is present.	Parts of an element are missing, however does not affect functionality.	Element is missing but assessment has determined element is not needed for functionality.	Element is missing.
	VENT	Condition of Well Vent	Distress or damage to anode well vent.	No distress.	Minor distress to vent.	Minor or moderate distress that may affect the ability of the pipe to vent gases properly.	Vent is damaged and/or filled so that immediate functionality has been compromised.

Detailed Descriptions CM pg E.2-10

- Some condition states based on quantitative data / measurements
- Units for measurement are different than units for element (ex: mass vs. Ea., mils vs SF)

						Ca	onditi	on States		
Type	Code	Condition Name	Condition Definition	CS1 (Con		CS2 (Fair)		CS3 (Poor)	CS4 (Severe)	
	CNSM	Consumption	Consumption of anode.	<10% consum weight	ned by	10-50% consumed b weight	у	51-75% consumed by weight	>75% consumed weight	by
	CONA	Condition of Connection	Condition or informate were connecting anode to the wiring.	connection is and functionin intended.	in place	Minor distress with distortion is present, connection is in plac and functioning as intended.	but	Cracked weld or damaged connection; assessment has determined electrical connection has not been compromised.	Cracked weld or connection result electrical isolatio anode.	ting in
s	MARG	Marine Growth	Organic growth on bulk and/or ribbon anodes.	No marine gro present.	owth	Minor marine growt anode.	h on	Moderate marine growth on anode that may affect functionality.	Significant marine growth on anode affecting functionality.	
Anodes	place		Element intended to be in place is missing. Does not apply to elements that hav been intentionally remo			bes lity	Element is missing but assessment has determined element is c Protection (SACP) Component Elemen		Ŭ	
			as part of a modification	Element Code(s)	,	ment Descriptor		Element Identifie		Unit
	PASS	Passivation	Passivation of anode.			Cathodic P	rotec	tion Jackets (JA)		
	PROT	Protection or	Condition of Anode	JA-FG JA-PVC	Jacket PVC Cath	dic Protection nodic Protection	func a gai	ems serving to encase a str tional element, typically in lvanic cathodic protection s	conjunction with system, such as	EA
	FROT	Sleeve	Protection or Sleeve		Jacket	Anode		erlying zinc mesh or an atta crificial (AS)	ched bulk anode.	
Detailed D				AS-AL AS-CI AS-DL AS-GP AS-MG AS-ZN AS-MMO AS-SCI AS-OTH	AL Anode CI Anode DL Anode GP Anode MG Anode ZN Anode MMO An SCI Anode	e e le ode	sys me pro	odes are installed as part o stem. Galvanic anodes are r tals with respect to the stru tected and are designed to rode. Anodes are typically ode wells, soil, or underwat	nore active cture being preferentially installed in	EA

 Some condition states based on quantitative data

 Units for measurement are different than units for element (ex: % loss vs. LF)

					Conditio	on States	
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	WETH	Weathering Steel Patina [See Table Note 1]	Condition of weathering steel patina (oxide film).	Uniform color pattern, dark brown with some lighter reddish- or purple-brown spots. Patina is adhered.	Dark brown but with minor color variation. Small loose flakes on surface but underlying patina is adhered.	Dark brown with black blotches, non-uniform texture. Medium (up to 1 inch) sized flakes.	Dark brown, black patina with widespread blotchiness. Laminar sheets or large flakes. Patina is no longer effective
Metal Material	CORR	Corrosion	Corrosion of metal and other material elements, excluding connections.	No corrosion observed.	Freekled rust or light pitting present; section loss is not evident.	Section loss is evident or pack rust is present, but assessment has determined element's functionality or capacity is not compromised.	Section loss is significant enough to affect element's immediate functionality or capacity Pack rust is causing element instability or prevents elements from functioning as intended.
ž	SXLS	Section loss	Section loss of base metal elements based on measured thickness during inspection.	$\leq 2\%$ section loss	>2% to ≤ 10% section loss	$>10\%$ to $\le 30\%$ section loss	>30% section loss

Detailed Descriptions CM PG E.2-10

- Some condition states based on quantitative data / measurements
- Units for measurement are different than units for element (ex: mils vs. SF)

Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	ADHS	Adhesion	Adhesion of protective coating on base metals based on measured inspection data, using ASTM D4541 or D3359 or equivalent.	Typical pull off testing values ≥200 psi. Adhesion test result classification of 5B.	Typical pull off testing values between 100 and 200 psi. Adhesion test result classification of 4B or 3B.	Typical pull off testing values between 50 and 100 psi. Adhesion test result classification of 2B or 1B.	Typical pull off testing values less than 50 psi. Adhesion test result classification of 0B.
	CHLK	Chalking	Chalking in metal protective coatings	No chalking.	Surface dulling.	Loss of pigment.	Loss of adhesion to structure resulting in disbondment of coating, structure becomes susceptible to corrosion.
Wraps, and Metalizing	FRPW	Fiber-reinforced polymer wrap	Condition of fiber-reinforced (Glass, Carbon, or other material) polymer permanently bonded to a member. Also may apply to unbonded plastic wrap, such as for piles.	No visible distress.	Minor bubbles or blisters. Minor abrasion to surface layer.	Delamination, gouges, holes, tears, or splits in material but assessment has determined capacity or functionality of wrap is not compromised.	Delamination, gouges, holes, tears, or splits in material that affects capacity or functionality of wrap.
Coatings, Wr	GALV	Galvanized zinc coating	Condition of galvanized zinc patina on steel elements.	No white or red corrosion products. Surface may be bright and shiny, spangled, or matte gray.	White rust (zinc oxide) is visible on surface.	Red rust is visible through coating on less than 5 percent of the local area.	Red rust exceeds 5 percent of the local area.
	PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking.	Finish and primer coats exhibit peeling, bubbling, or cracking,	Substrate is exposed.
	THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	≥ 18 mils	\geq 10 mils to < 18 mils	\geq 5 mils to < 10 mils	<5 mils
	WEAR	Wear	Wear of protective coating. Includes wear from abrasion	No wear.	Substrate not exposed, coating showing wear or	Substrate is partially exposed: thickness of	Substrate exposed; protective coating is no

Summary

- Characterization of corrosion and base metal elements using the four predefined condition states.
 - Based on element and/or material
- Quantitative data obtained as part of Corrosion Manual
 - Provide specific condition ratings for elements

Practical Examples

Practical Example #1: Rectifier

Practical Example #1: Rectifier

Given

- Rectifier appears to be functioning
- DC output amperage measured at 45 amps
- Ammeter reads DC output amperage at 0 amps

Practical Example #1: Rectifier

Review

- What component is this element a part of?
 - ICCP
- What element do the photographs refer to?
 - TRU DC Power Supply
 - PW-TRU

Practical Example #1: Rectifier

Questions

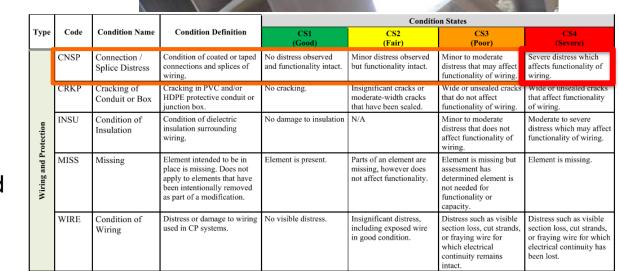
- Condition code would you use?
 - DISP Error in Output
 Display Panels
- What condition state and quantity would you assign to this element?
 - CS4 (1 EA)

		1.		بالاستحداد والمتعال	Conditio	on States	
Гуре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	ACIN	Error in AC Input	Incorrect AC input readings.	N/A	N/A	Error in AC input frequency.	No AC input voltage.
	BATT	Condition of Battery	Condition of CP battery.	No distress and proper output voltage measured.	Distress to battery and/or terminals that does not affect output voltage.	Distress to battery and/or terminals that reduces output voltage. May also include typical usage of battery.	Zero voltage output.
	DISP	Error in Output Display Panels	Accuracy of rectifier output panels.	<5% measured error in current and/or voltage display panels	5 to 10% measured error in current and/or voltage display panels.	>10% measured error in current and/or voltage display panels.	Current and/or voltage display panels nonfunctional.
pphy	ELEC	Condition of Electrical Parts	visual and functional condition of electrical components, including shunts, breakers, fuses, diodesetc.	and functionality intact.	Minor distress observed but functionality intact.	Minor to moderate distress observed but functionality intact.	distress observed with possibly impacted functionality.
Power Supply	LABL	Condition of Labels	Condition of labels unit and leads.	Easily legible.	Worn but legible.	Limited or no legible label information.	Labels for leads incorrectly labelled.
ä	MISS	Missing	Element intended to be in place is missing. Does not apply to elements that have been intentionally removed as part of a modification.	Element is present	Parts of an element are missing, however does not affect functionality.	Element is missing and has negatively impacted functionality or capacity.	Element is missing and is preventing any functionality or capacity
	OUTP	DC Output	DC output readings.	DC output voltage and current.	N/A	Zero DC output current with DC output voltage	Zero DC output current and zero DC output voltage.
	VAND	Environmental / Vandalism	Deliberate or undeliberate destruction of PHA property by persons or environmental conditions.	No damage present	Potentially detrimental environmental conditions not yet resulting in damage (e.g. buildup of flammable material near electrical equipment).	Damage to equipment but functionality has not been diminished,	Damage to equipment resulting in reduced or eliminated functionality

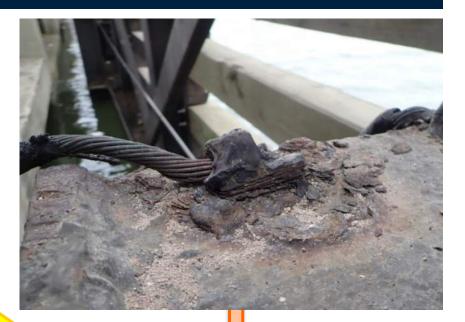
Given

- Bond wire connecting fender pile and support framing
- Corrosion at connection resulted in disbonded wire

Review


- What component is this element a part of?
 - ICCP
- What element do the photographs refer to?
 - Wiring and Protection
 - WI-CU

Questions


- What condition code would you use?
 - CNSP Connection / Splice Distress
- What condition state and quantity would you assign?

• CS4 (1 EA)

					Condition States		
Туре	Code	Condition Name	Condition Definition	CS (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	CNSP			No distress observed and functionality intact.	Minor distress observed but functionality intact.	Minor to moderate distress that may affe functionality of wirin	
			Cracking in PVC and/or HDPE protective conduit or	No cracking.	Insignificant cracks or moderate-width cracks	Wide or unsealed cra that do not affect	ks Wide or unsealed cracks that affect functionality

Page 19

K. 5							
					Conditio	on States	
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	CNSP	Connection / Splice Distress	Condition of coated or taped connections and splices of wiring.	No distress observed and functionality intact.	Minor distress observed but functionality intact.	Minor to moderate distress that may affect functionality of wiring.	Severe distress which affects functionality of wiring.
	CRKP	Cracking of Conduit or Box	Cracking in PVC and/or HDPE protective conduit or junction box.	No cracking.	Insignificant cracks or moderate-width cracks that have been sealed.	Wide or unsealed cracks that do not affect functionality of wiring.	Wide or unsealed cracks that affect functionality of wiring.
Protection	INSU	Condition of Insulation	Condition of dielectric insulation surrounding wiring.	No damage to insulation	N/A	Minor to moderate distress that does not affect functionality of	Moderate to severe distress which may affect functionality of wiring.
Wiring and P	MISS	Missing	Element intended to be in place is missing. Does not apply to elements that have been intentionally removed as part of a modification.		Parts of an element are missing, however does not affect functionality.	Element is missing but assessment has determined element is not needed for functionality or capacity.	Element is missing.
	WIRE	Condition of Wiring	Distress or damage to wiring used in CP systems.		Insignificant distress, including exposed wire in good condition.	Distress such as visible section loss, cut strands, or fraying wire for which electrical continuity remains intact.	Distress such as visible section loss, cut strands, or fraying wire for which electrical continuity has been lost.
15	12	n					

Given

- Coating at bulkhead wall
- Exposed portion in mostly good condition
- Area where full coating system is peeling/cracked and substrate is exposed

Questions

- What condition code would you use?
 - PEEL Peeling/ bubbling/ cracking
- What condition state and quantity would you assign?
 - CS4 (3 SF)

					Conditio	on States	
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	ADHS	Adhesion	Adhesion of protective coating on base metals based on measured inspection data, using ASTM D4541 or D3359 or equivalent.	Typical pull off testing values ≥200 psi. Adhesion test result classification of 5B.	Typical pull off testing values between 100 and 200 psi. Adhesion test result classification of 4B or 3B.	Typical pull off testing values between 50 and 100 psi. Adhesion test result classification of 2B or 1B.	Typical pull off testing values less than 50 psi. Adhesion test result classification of 0B.
	CHLK	Chalking	Chalking in metal protective coatings	No chalking.	Surface dulling.	Loss of pigment.	Loss of adhesion to structure resulting in disbondment of coating, structure becomes susceptible to corrosion.
Wraps, and Metalizing	FRPW	Fiber-reinforced polymer wrap	Condition of fiber-reinforced (Glass, Carbon, or other material) polymer permanently bonded to a member. Also may apply to unbonded plastic wrap, such as for piles.	No visible distress.	Minor bubbles or blisters. Minor abrasion to surface layer.	Delamination, gouges, holes, tears, or splits in material but assessment has determined capacity or functionality of wrap is not compromised.	Delamination, gouges, holes, tears, or splits in material that affects capacity or functionality of wrap.
Coatings, Wr	GALV	Galvanized zinc coating	Condition of galvanized zinc patina on steel elements.	No white or red corrosion products. Surface may be bright and shiny, spangled, or matte gray.	White rust (zinc oxide) is visible on surface.	Red rust is visible through coating on less than 5 percent of the local area.	Red rust exceeds 5 percent of the local area.
	PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking.	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.
	THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	≥ 18 mils	\geq 10 mils to < 18 mils	\geq 5 mils to < 10 mils	<5 mils
	WEAR	Wear	Wear of protective coating. Includes wear from abrasion or weathering.	No wear.	Substrate not exposed, coating showing wear or abrasion.	Substrate is partially exposed; thickness of the coating is reduced.	Substrate exposed; protective coating is no longer effective.

Practical Example #4: Pile Coating

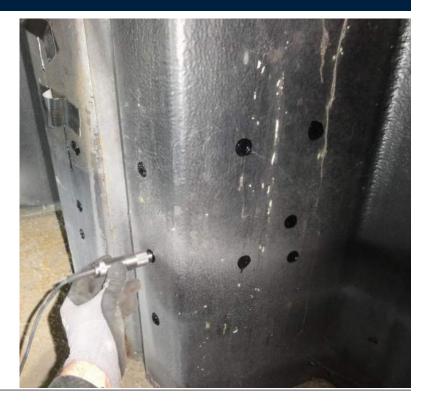
Given

- Coating at fender pile
- Atmospheric portion in mostly good condition
- Splash zone area where substrate is exposed
- Coating is peeling

Practical Example #4: Pile Coating

Questions

- What condition code would you use?
 - PEEL Peeling/ bubbling/ cracking
- What condition state and quantity would you assign?
 - CS2 (1SF)
 - CS4 (2 SF)

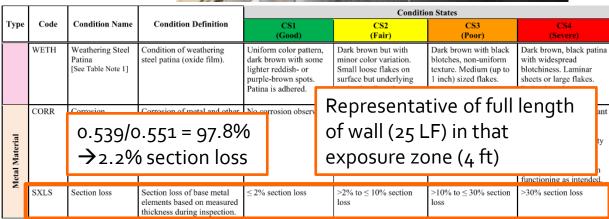


Γ						Condition States						
1	Гуре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)				
		PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking.	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.				

Practical Example #5: Measurements

Given

- Bulkhead Wall (Base Metal)
 - Metal Thickness at Flange
 - Design: 0.551 inches
 - Thickness: 0.539 inches (average)
- Wall Coating
 - Thickness: 29.6 mils (average)

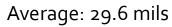

Practical Example #5: Measurements

Questions

- Base Metal What condition code?
 - SXLS Section loss based on measurements
- What condition state and quantity?
 - CS2
 - 25 LF

ORT HOUSTON

WATERNAL PORT OF T



Practical Example #5: Measurements

Questions

- Coating- What condition code?
 - THCK Thickness of coating based on measurements
- What condition state and quantity?
 - CS1
 - 100 SF

				Condition States						
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)			
	PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking.	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.			
	THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	≥ 18 mils	≥ 10 mils to < 18 mils	\geq 5 mils to < 10 mils	<5 mils			
	WEAR	Wear	Wear of protective coating. Includes wear from abrasion or weathering.	No wear.	Substrate not exposed, coating showing wear or abrasion.	Substrate is partially exposed; thickness of the coating is reduced.	Substrate exposed; protective coating is no longer effective.			

exposure zone (4 ft)

END OF MODULE

Module 4.2

Documenting Element Condition States

Corrosion Manual Training Course

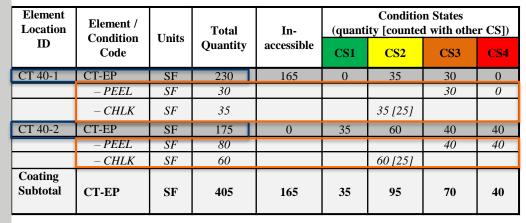
Module Objectives

Module 4.2 Learning Outcomes

- Document an element's condition state using an Element Inspection Form
- Understand required elemental input for database submission

- Characterize <u>and quantify</u> any observable conditions exhibited by an individual element
- An element may experience multiple conditions, even in the same location
 - Record condition and quantity
 - Some quantities not counted if multiple conditions exist in a given area

Element Location	Element / Condition	Units	Total			Condition States (quantity [counted with other CS])				
ID	Code		Quantity	accessible	CS1	CS2	CS3	CS4		
CT 40-1	CT-EP	SF	230	165	0	35	30	0		
	-PEEL	SF	30				30	0		
	- CHLK	SF	25			35 [25]				
CT 40-2	CT-EP	SF	175	0	35	60	40	40		
	-PEEL	SF	80				40	40		
	- CHLK	SF	85			60 [25]				
Coating Subtotal	СТ-ЕР	SF	405	165	35	95	70	40		


 Not counted quantities identified in brackets or separate column in database

Provided by Inspection Plan:

- Element Location ID
- Element Codes
- Units & Quantities
- Documented during Inspection:
 - Condition Codes
 - Condition States
 - Quantities

ORT HOUS

Inaccessible areas

Example: Coating Element

CT 40-2

- Epoxy coating
- 175 SF total
- Visual Observations
 - Peeling, chalking of varying degrees

Area 1

- 40 SF CS4 PEEL
- Area 2
 - 40 SF CS3 PEEL
 - 25 SF CS2 CHLK
- Area 3
 - 60 SF CS2 CHLK

Example: Coating Element CT40-2

Area 1

40 SF CS4 PEEL

Area 2

- 40 SF CS3 PEEL
- 25 SF CS2 CHLK

Area 3

60 SF CS2 CHLK

Remaining CS1

Pg 30 of CM

Element Location	Element / Condition	Units	Total	In- accessible	Condition States (quantity [counted with other CS])				
ID	Code		Quantity	accessible	CS1	CS1 CS2		CS4	
CT 40-1	CT-EP	SF	230	165	0	35	30	0	
	- PEEL	SF	30				30	0	
	- CHLK	SF	35			35 [25]			
CT 40-2	CT-EP	SF	175	0	35	60	40	40	
	- PEEL	SF	80				40	40	
	– CHLK	SF	60			60 [25]			
Coating Subtotal	CT-EP	SF	405	165	35	95	70	40	

PORT HOUSTON THE INTERNATIONAL PORT OF TEXAS*

Documenting Condition States & Quantities

- Elemental inspection data on reporting forms
- Brackets or separate columns for quantity data not counted

Element	Element /	TI	Total	In-	С	ondition	States (quan	tity [cou	nted with ot	her CS]
Location ID	Condition Code	Units	Quantity	accessib	le	CS1	CS2		S 3	CS4
CT 40-1	CT-EP	SF	230	165		0	35		30	0
	– PEEL	SF	30						30	0
	– CHLK	SF	35				35 [25]			
CT 40-2	CT-EP	SF	175	0		35	60		40	40
	– PEEL	SF	80						40	40
	– CHLK	SF	60				60 [25]			
Coating Subtotal	СТ-ЕР	SF	405	165		35	95		70	40
Element	Element /	Units	Total	In-			ondition St	ates (qua	ntity)	
Location ID	Condition Code		Quantity	accessible	CS1	CS2	CS2NC	CS3	CS3NC	CS4
CT 40-1	CT-EP	SF	230	165	0	35	25	30	0	0
	– PEEL	SF	30					30		0
	– CHLK	SF	35			35	2.5			
	-									
CT 40-2	CT-EP	SF	175	0	35	60	25	40	0	40
CT 40-2	CT-EP – PEEL	SF SF		0	35		25	40 40	0	40 40
CT 40-2			175	0	35		25		0	.0

- Elemental condition states and quantities entered in the PHA Database
- Separate column for Not Counted quantities

Surface Pro	tection									
CT 1-1	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	CS3	CS3NC	CS4	CS4NC
CT 1-1	Baseline	100	0	100	0	0	0	0	0	0
CT 1-1	ADHS		0	0	30	0	0	0	0	0
CT 1-1	PEEL		0	0	0	0	0	0	15	0
CT 1-2	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	C\$3	CS3NC	CS4	CS4NC
CT 1-2	Baseline	400	0	400	0	0	0	0	0	0
CT 1-2	PEEL		0	0	0	0	0	0	115	0
CT 1-2	ADHS		0	0	240	0	0	0	0	0
CT 1-3	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	CS3	C\$3NC	C54	C54NC
CT 1-3 CT 1-3	CSCode Baseline	Total Qty. 134	ot Accessibi	CS1 134	CS2 0	CS2NC 0	CS3 0	CS3NC 0	CS4 0	C54NC 0
CT 1-3	Baseline	134	0	134	0	0	0	0	0	0
CT 1-3 CT 1-3	Baseline	134	0	134	0	0	0	0	0	0
CT 1-3 CT 1-3 CT 2-1	Baseline PEEL CSCode	134 Total Qty.	0 0 ot Accessib	134 0 CS1	0 0 CS2	0 0 CS2NC	0 10 CS3	0 0 CS3NC	0 15 CS4	0 0 CS4NC
CT 1-3 CT 1-3 CT 2-1 CT 2-1	Baseline PEEL CSCode Baseline	134 Total Qty. 100	ot Accessibi	134 0 CS1 100	0 0 CS2 0	0 0 CS2NC 0	0 10 CS3 0	0 0 <u>CS3NC</u> 0	0 15 0 0	0 0 CS4NC 0
CT 1-3 CT 1-3 CT 2-1 CT 2-1 CT 2-1	Baseline PEEL CSCode Baseline PEEL	134 Total Qty. 100	ot Accessibl	134 0 CS1 100 0	0 0 0 0 0	0 0 CS2NC 0	0 10 CS3 0 0	0 0 CS3NC 0	0 15 CS4 0 12	0 0 <u>C\$4NC</u> 0

- Database provides
 Summary of Elemental
 Condition State
 - Sorted by Component
 - Summary of Quantities

CT-CE	Total Qty.	Not Accessible	CS1	CS2	CS2NC	CS3	CS3NC	CS
ADHS		0	0	405	135	60	0	30
Baseline	15819	0	13350	0	0	0	0	0
PEEL		0	0	0	0	128	0	148
THCK		0	0	364	170	0	10	0
Total CT-CE	15819	0	13350	769	305	188	10	151
CT-EP	Total Qty.	Not Accessible	CS1	CS2	CS2NC	CS3	CS3NC	CS
ADHS		0	0	336	0	0	0	0
Baseline	7796.5	0	7008	0	0	0	0	0
PEEL		0	0	127	0	37	0	57
THCK		0	0	231.5	245	0	0	0
Total CT-EP	7796.5	0	7008	694.5	245	37	0	57
HG-HDG	Total Qty.	Not Accessible	CS1	CS2	CS2NC	CS3	CS3NC	G
Baseline	234	0	210	0	0	0	0	0
GALV		0	0	24	0	0	0	0
Total HG-HDG	234	0	210	24	0	0	0	0

Photographs

- Anything with follow-up action
- Representative of conditions
- Submit to database
 - JPEG
 - 2048 pixels on longest edge
- Example Photo Naming

- CD29_CT10-3_Baseline_3-22-2021_001.jpg

Practical Examples

Practical Example #1: Bulkhead Wall

Given Information:

- Component: Base Metal
- Element: Bulkhead Wall (Typical)
- Design Thickness: 0.5 in.
- Average Measured UT: 0.435 in.
- What Condition Code(s), State(s), and est. quantities are appropriate?
 - Condition Code: SXLS
 - Condition State: CS3

RT HOUSTO

					Condition States						
_	Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)			
	N	SXLS		Section loss of base metal elements based on measured thickness during inspection.	\leq 2% section loss	$>2\%$ to $\le 10\%$ section loss	>10% to \leq 30% section loss	>30% section loss			

Practical Example #2: Coating

Given

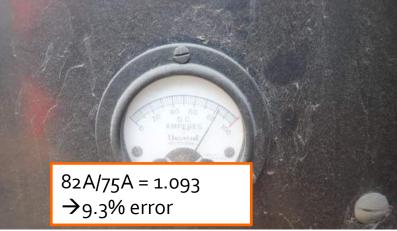
- Component: Surface Protection
- Element: Coal Tar Epoxy Coating
- Pull-off Testing: 150 psi average in 200 SF atmospheric/exposed zone
- Visual observations →
- What Condition Code(s), State(s), and est. quantities are appropriate?
 - PEEL CS4, 15 SF

ADHS CS2, 185 SF

Practical Example #3: Wiring Protection

- Given Information:
 - Component: Impres:
 - Element: PR-HDPE
 - Broken conduit, wirir
- What Condition Code(s), State(s), and est. quantities are appropriate?
 - Condition Code: CRKP
 - Condition State: CS3
 - Quantity: 1 EA

				Condition States						
Гуре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)			
	CNSP	Connection / Splice Distress	Condition of coated or taped connections and splices of wiring.	No distress observed and functionality intact.	Minor distress observed but functionality intact.	Minor to moderate distress that may affect functionality of wiring.	Severe distress which affects functionality of wiring.			
	CRKP	Cracking of Conduit or Box	Cracking in PVC and/or HDPE protective conduit or junction box.	No cracking.	Insignificant cracks or moderate-width cracks that have been sealed.	Wide or unsealed cracks that do not affect functionality of wiring.	Wide or unsealed cracks that affect functionality of wiring.			
	INSU	Condition of Insulation	Condition of dielectric insulation surrounding wiring.	No damage to insulation	N/A	Minor to moderate distress that does not affect functionality of wiring.	Moderate to severe distress which may affec functionality of wiring.			
<u>.</u>										



Practical Example #4: Rectifier

Given Information:

- Component: ICCP
- Element: Transformer-Rectifier Unit
- Measured D.C. Current Output: 75 amps
- What Condition Code(s), State(s), and est. quantities are appropriate?
 - Condition Code: DISP
 - Condition State: CS2
 - Quantity: 1 EA

				Condition States						
Гуре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)			
	ACIN	Error in AC Input	Incorrect AC input readings.	N/A	N/A	Error in AC input frequency.	No AC input voltage.			
	BATT	Condition of Condition of CP battery. Battery		No distress and proper output voltage measured.	Distress to battery and/or terminals that does not affect output voltage.	Distress to battery and/or terminals that reduces output voltage. May also include typical usage of battery.	Zero voltage output.			
	DISP	Error in Output Display Panels	Accuracy of rectifier output panels.	<5% measured error in current and/or voltage display panels	5 to 10% measured error in current and/or voltage display panels.	>10% measured error in current and/or voltage display panels.	Current and/or voltage display panels nonfunctional.			
	ELEC	Condition of Electrical Parts	Visual and functional condition of electrical components_including	No distress observed and functionality intact.	Minor distress observed but functionality intact.	Minor to moderate distress observed but functionality intact	Moderate to major distress observed with possibly impacted			

Practical Example #4: Rectifier

What if the shunt is also not functional?

- ELEC
- CS4, ²

Record or inspectior database'

PORT HOUSTON

Element

Location ID

PW 1-1

			Condition Name		Condition Definition		Condition States							
EC	Туре	Code					(CS1 Good)		CS2 (Fair)			:S3 oor)	CS4 (Severe)
		ACIN	Error in AC Input	2	Incorrect AC	input readings	s. N/A		N/A	Υ.		Error in AC frequency.	C input	No AC input voltage.
54, 1 EA		BATT	Condition of Battery		Condition of CP battery. Accuracy of rectifier output panels.		output vo	output voltage terminals th affect output <5% measured error in current and/or voltage 5 to 10% measured in current and display panels No distress observed Minor distrest		but functionality intact. distress observe		inals that put voltage. iclude	Zero voltage output.	
rd on		DISP Error in Display		· · · · ·			current an					>10% meas current and	sured error in /or voltage	Current and/or voltage display panels ponfunctional
ction form/ ase?			Condition o Electrical P			electrical including						Minor to moderate distress observed but functionality intact.		Moderate to major distress observed with possibly impacted functionality.
	Power Su	LABL	Condition of Labels		Condition of leads.	f labels unit and	Easily leg	gible.	Wor	rn but legible.		Limited or label inform		Labels for leads incorrectly labelled.
Element /	Units]	Total]	ln-		(Condition	n Sta	ates (qua	antity	y)		
Condition Code	Units	Qu	antity	acce	essible	CS1	CS2	CS2NO	С	CS3	CS	3NC	CS4	
PW-TRU	EA		1		0	0	0	1		0	0 0		1	
- DISP	SF		0					1						
- ELEC	SF		1										1	

DISP, CS₂, 1 EA

Given

- Coating 300 SF total quantity
 - 100 SF Atmospheric
 - 50 SF Splash
 - 150 SF Submerged
- Mostly good condition
- Area where full coating is peeling/ cracked and substrate is exposed

Questions

- What condition code would you use?
 - PEEL Peeling/ bubbling/ cracking
- What condition state and quantity would you assign?
 - CS4 (3 SF)

					Conditio	on States	
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	ADHS	Adhesion	Adhesion of protective coating on base metals based on measured inspection data, using ASTM D4541 or D3359 or equivalent.	Typical pull off testing values ≥200 psi. Adhesion test result classification of 5B.	Typical pull off testing values between 100 and 200 psi. Adhesion test result classification of 4B or 3B.	Typical pull off testing values between 50 and 100 psi. Adhesion test result classification of 2B or 1B.	Typical pull off testing values less than 50 psi. Adhesion test result classification of 0B.
	CHLK	Chalking	Chalking in metal protective coatings	No chalking. Surface dulling.		Loss of pigment.	Loss of adhesion to structure resulting in disbondment of coating, structure becomes susceptible to corrosion.
Wraps, and Metalizing	FRPW	Fiber-reinforced polymer wrap	Condition of fiber-reinforced (Glass, Carbon, or other material) polymer permanently bonded to a member. Also may apply to unbonded plastic wrap, such as for piles.	No visible distress.	Minor bubbles or blisters. Minor abrasion to surface layer.	Delamination, gouges, holes, tears, or splits in material but assessment has determined capacity or functionality of wrap is not compromised.	Delamination, gouges, holes, tears, or splits in material that affects capacity or functionality of wrap.
Coatings, Wr	GALV	Galvanized zinc coating	Condition of galvanized zinc patina on steel elements.	No white or red corrosion products. Surface may be bright and shiny, spangled, or matte gray.	White rust (zinc oxide) is visible on surface.	Red rust is visible through coating on less than 5 percent of the local area.	Red rust exceeds 5 percent of the local area.
	PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking.	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.
	THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	≥ 18 mils	≥10 mils to < 18 mils	\geq 5 mils to < 10 mils	<5 mils
	WEAR	Wear	Wear of protective coating. Includes wear from abrasion or weathering.	No wear.	Substrate not exposed, coating showing wear or abrasion.	Substrate is partially exposed; thickness of the coating is reduced.	Substrate exposed; protective coating is no longer effective.

Given

- Testing in atmospheric zone
 (25 LF x 4 FT exposure =
 100 SF)
- Adhesion Testing
 - 150 psi average
- Thickness Testing
 - Average 17.5 mils

					Condition States							
Г	уре	e Code Condition Name Condition Definition		CS1 CS2 (Good) (Fair)		CS3 (Poor)	CS4 (Severe)					
		ADHS	Adhesion	Adhesion of protective coating on base metals based on measured inspection data, using ASTM D4541 or D3359 or equivalent	Typical pull off testing values ≥200 psi. Adhesion test result classification of 5B.	Typical pull off testing values between 100 and 200 psi. Adhesion test result classification of 4B or 3B	Typical pull off testing values between 50 and 100 psi. Adhesion test result classification of 2B or 1B	Typical pull off testing values less than 50 psi. Adhesion test result classification of 0B.				
				-	括川	1 the						
					Condition States							
1	Гуре	Code	ode Condition Name Condition Definition		CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)				
		PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	No peeling, bubbling, or cracking.	Finish coat exhibits peeling, bubbling, or cracking	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.				
		THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	≥18 mils	≥10 mils to < 18 mils	≥ 5 mils to < 10 mils	<5 mils				
		WEAR	Wear	Wear of protective coating. Includes wear from abrasion or weathering.	No wear.	Substrate not exposed, coating showing wear or abrasion.	Substrate is partially exposed; thickness of the coating is reduced.	Substrate exposed; protective coating is no longer effective.				

- Inspection Results
 - CS4 PEEL 3 SF
 - CS2 ADHS 97 SF
 - CS2 THCK 100 SF Not Counted

- Coating 300 SF total quantity
 - 100 SF Atmospheric
 - 50 SF Splash
 - 150 SF Submerged (Not accessed)

Element	Element /	I Inita	Total	In-		(Condition St	ates (qua	antity)	
Location ID	Condition Code	Units	Quantity	accessin	CS1	CS2	CS2NC	CS3	CS3NC	CS4
CT 1-1	CT-EP	SF	300	150	50	97	100	0	0	3
	PEEL	SF	3							3
	ADHS	SF	97			97				
	THCK	SF	0				100			

Practical Example #5: Wall Coating

- What if we measured 9 mils coating thickness?
 - CS2 THCK 100 SF
 Not Counted
 - CS3 THCK 100 SF

			,	Condition States						
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)			
	PEEL	Peeling/ bubbling/ cracking	Peeling, bubbling, or cracking in protective coatings or wraps	cracking.	peeling, bubbling, or	Finish and primer coats exhibit peeling, bubbling, or cracking.	Substrate is exposed.			
	THCK	Thickness	Thickness of protective coating on base metals based on measured inspection data.	\geq 18 mils	\geq 10 mils to < 18 mils	\geq 5 mils to < 10 mils	<5 mils			
	WEAR	Wear	Wear of protective coating. Includes wear from abrasion or weathering.	No wear.	Substrate not exposed, coating showing wear or abrasion.	Substrate is partially exposed; thickness of the coating is reduced.	Substrate exposed; protective coating is no longer effective.			

Element	Element Element /		Unita Total In-			Condition States (quantity)					
Location ID	Condition Code	Units	Quantity	accessible	CS1	CS2	CS2NC	CS3	CS3NC	CS4	
CT 1-1	CT-EP	SF	300	150	50	0	97	97	3	3	
	PEEL	SF	3							3	
	ADHS	SF	0			9 7	97				
	ТНСК	SF	97				100	97	3		

Module Wrap-Up

- Identify damage and deterioration found in PHA elements using condition codes
- Characterize severity using the four predefined condition states
- Record quantity of damage and deterioration conditions found in PHA elements
- Document an element's condition state using an Element Inspection Form and PHA database

END OF MODULE

Module 5.1

Baseline Inspection Planning

Corrosion Manual Training Course

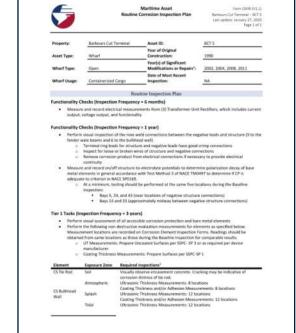
Module Objectives

Module 5.1 Learning Outcomes

- Identify components and associated elements in corrosion inspection
- Classify importance of base metal elements
- Characterize exposure zones of elements
- Identify appropriate inspection procedures for corrosion protection and base metal elements
- Develop a Baseline Corrosion Inspection Plan

Module References

- Chapter 2: Inspection Types
- Chapter 8: Documentation and Reporting
- Appendix F: Documentation and Reporting Forms


Asset-Specific Inspection Plan

Considers the following:

- Specific components/elements to be inspected
- Current age and expected design life
- Nature/severity of environmental conditions and exposure
- Types of corrosion mechanisms
- Classification of base metals
- Current conditions

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS

Inspection Plan Goals

Primary goals of an inspection plan:

- Define the type(s) of inspection procedures needed
- Identify the frequency for each inspection type
- Describe the inspection methods and NDE techniques
- Describe the extent and locations of inspection and NDE
- Identify any surface cleaning requirements that may be needed for each type of inspection
- Describe access requirements to perform the inspections

Types of Inspections

- Visual inspection
- NDE techniques
- Coating thickness and/or adhesion testing
- Anode mass measurement
- CP system electrical measurements

Baseline Inspection Planning

1. Develop Corrosion Inventory Record

- Identify components and elements
- Classify importance and design thickness for base metals
- Characterize exposure zone for each element group
- Characterize environmental conditions of asset

2. Develop Corrosion Drawings

Shows all elements (labels and quantities)

3. Develop Corrosion Inspection Plan

Defines specific tasks, locations, and frequencies

Inventory Record: Corrosion Protection

- Corrosion Protection Components
 - Identify all corrosion protection components
 - Identify elements and materials associated with each component
 - Review design intent of each installed system
 - Identify current age(s)

Task performed by document review.

	Impressed Current Corrosion Protection Elements
Component / Element(s)	Description
Bulk Anode	Bulk anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.
– OTH Bulk Anode	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes. Anodes are installed at Elev3.0 and -12.0'.
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note drawings indicate five rectifiers, but only three were installed.
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside of the bulkhead wall adjacent to light poles 8 through 12.
	Sacrificial Anode Corrosion Protection Elements
None.	
	Common Corrosion Protection Elements
Component / Element(s)	Description
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and it protected by PVC conduit to the landside of the bulkhead wall.
- CU Wiring	No. 6/7 copper wring connects the corrosion protection system. Positive leads rur to the bulk anodes and negative leads are connected to the fender system and bulkhead wall. Negative leads connect the copper conduit to the top fender wall beam and bulkhead wall in three and sis locations, respectively.
 PVC Protection 	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.
	Surface Protection Elements
Component / Element(s)	Description
Surface Protection	Coatings are used in conjunction with the ICCP system for protection of the bulkhead wall and fender system.
- PU Coatings	A three-coat system is used for protection of the fender system (Epoxy Low and Intermediate Coat with an Acrylic Urethane Topcoat).
- EP Coatings	An epoxy coating system is used for protection of the bulkhead wall (details

unknown!

Inventory Record: Base Metals

Base Metal Components

- Identify base metal elements and materials
- Classify importance (Critical, Typical, Redundant)
- Define exposure zones
- Identify current age(s) and design metal thicknesses

Task performed by document review.

Component / Element(s)	Description
Critical	
- CS Tie Rod	Tie rods, 3-3/4 inch diameter, extending from buikhead wale beam to dead man, spaced at approximately 15 feet on center and encased in Schedule 40 PVC Casings.
	Installed in 1990, no documented madifications or repairs. Design Cross-Sectional Area = 11.0 in ²
Typical	
- CS Bulkhead	Wall Steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown at -5.00'.
	 Installed in 1990, no documented modifications or repairs. Design Thickness = 0.5 in
- CS Fender Pi	es HP117 piles are extend from Elev. +16.0 to -69.0' and are spaced at 10'-9" on center.
	 Installed in 1990, no documented modifications or repairs. Design Web/Flonge Thickness = 0.805 in
Redundant	
- CS Support P	raming Structural steel framing used to support the timber facing consisting of W21x111 top wales and W14x43 bottom wales.
	Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011.
	 Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011. Design Thickness: W14x43 web = 0.305 in, flange= 0.330 in W21x111- web = 0.550 in, flange = 0.875 in
*Base Metal Compo	nents and Elements identified with FICAP labelling scheme
	Asset Exposure Zones
	sure zones have been identified at this site, the specific height of the zones and exposure effect ed based on review of environmental conditions and data.
Exposure Zone	Elevation versus MLLW Elements
Atmospheric Splash Tidal Submerged	+3.25 ft. or greater CS Bulkhead Wall, CS Fender Piles, CS Support Framing +1.25 to +3.25 ft. CS Bulkhead Wall, CS Fender Piles, CS Support Framing +0 to +1.25 ft. CS Bulkhead Wall, CS Fender Piles, CS Support Framing oft. or less CS Bulkhead Wall, CS Fender Piles

CS Tie Rods, CS Bulkhead Wall, CS Fender Piles

Below the mudline toward the

waterside of the hulkhead and

below the pavement on the landward side of the bulkhead

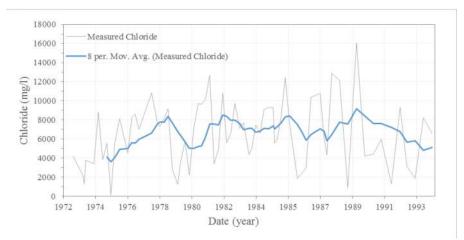
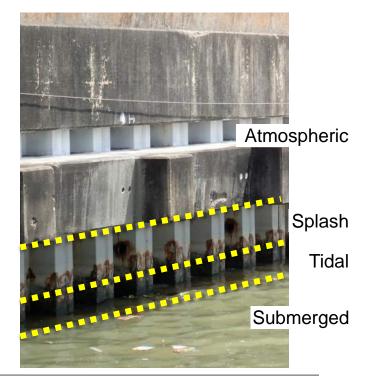

Inventory Record: Base Metals

	Table C-4. Base Metal Component Elements					Table C-4. Base Metal Component Elements				Table C-4. Base Metal Component Elements					
Element Code(s)	ement Code(s) Element Descriptor Element Identification Units ⁴			Element Code(s) Element Descriptor Element Identification Units ⁴			Units4	Element Code(s) Element Descriptor Element Identification				Units ⁴			
Critical (BMC)					And the second second	Typical (BMT)				Redundant (BMR)					
TR-CS-BMC TR-GS-BMC	CS Tie Rod GS Tie Rod	used as bracing and retaining walls. Doe	tural element. Includes elements those used as tie backs for s not include rods used solely for	EA	AW-CS-BMT	CS Anchor Wall	a retaining wall or bulkhead. Used as anchorage for another element.		a retaining wall or bulkhead. Used as anchorage for LF another element.		LF SF-GS-BMR GS Support Framing the fenders mooring for		g the fender system an mooring forces, but	ndary members generally add to the stability of ender system and do not distribute berthing and ring forces, but are lumped together with the	
DB-CS- BMC	CS Deck Beam	A structural element	loaded perpendicular to its		BW-CS-BMT BW-GS-BMT	CS Bulkhead Wall GS Bulkhead Wall		lement that functions primarily as structure. Primarily subject to out-	LF			primary-load carryin purposes.	primary-load carrying members for inspection purposes.		
DB-GS- BMC	GS Deck Beam		t transmits loads directly from or substructure element.	LF	1		of-plane lateral loa earth fill from water	sds. Bulkheads generally separate	LP	DU-GS-BMR	GS Deck (stay-in-pl form)		A horizontal, planar structural element that carries and distributes loads to superstructure or		
GI-CS- BMC GI-GS- BMC	CS Girder GS Girder		loaded perpendicular to its t transmits loads from a deck		DT-CS-BMT	CS Deck, open Grid		A horizontal, planar structural element that carries and distributes loads to superstructure or			(only)	substructure element	substructure elements. Observations specific to underside or full-depth of element.		
	dis Gilder	beam or stringer to t loads directly from a	he substructure. May also carry a portion of the deck.	LF			substructure elements. Observations specific to topside of element.		SF	FL-CS-BMR CS Fender Panel FL-GS-BMR GS Fender Panel		A rectangular eleme system that increase	A rectangular element oriented parallel to the fender system that increases the contact area of the fender		
GP -CS- BMC GP-WS- BMC	CS Gusset Plate WS Gusset Plate	between other struct	ement that provides a connection ural elements. Constructed with hat may be bolted, riveted, or	EA	SR-CS- BMT SR-GS- BMT	CS Stringer GS Stringer		nt loaded perpendicular to its hat transmits loads from the deck	LF			system against the s			
CO-CS- BMC CO-GS- BMC	GS Column (vertical, lateral and/or bending) from the deck or		LF	RW-CS- BMT	CS Retaining Wall	A structural wall element that functions primarily to		$\left \right $			BMT	`			
PI-CS- BMC						Tunical	carry vertical loads from ning walls are located above	LF			DIVI I				
		d	uperstructure, or substructure d bearing or friction. Piles are	iles are	CF-CS- BMT	CS Cofferdam	Typical	Il structural elements used as a		2					
		BMC	allation and driven into the idered deep foundation	LA	01-03-0011	C3 Concident	BMT	tructure.	EA						
PF-CS(S)- BMC PF-CS(C)- BMC	CS Sand-Filled Pile CS Concrete-Filled Pile	driven into the groun	onsists of a hollow steel pipe and and then filled with material. Piles", which are concrete-filled	EA	BB-CS- BMT	CS Bulkhead Wale Beam	A number of the second								
		pipes with tapered c			BC-CS-BMT	CS Bent Cap		ented structural element that m superstructure elements to		lat	ole C-4	in Appe	ndix C		
PC-CS- BMC	CS Pile Cap		ted structural element that substructure or superstructure	LF		111120-0010-0010-0	column elements b		LF						
		elements above to pi		-	BR-CS-BMT BR-GS-BMT	CS Brace GS Brace		diagonally oriented, fastened ts to provide lateral stability.	EA						
BG-CS- BMC	CS Closed Web/Box Girder	perpendicular to its	d structural element loaded longitudinal axis that transmits eam or stringer to the	LF	PB-CS- BMT	CS Battered Pile	between 30 and 60	is driven at an angle, typically) degrees from vertical. Battered	EA						
BT-CS- BMC BT-GS- BMC	CS Bulkhead Tie Rod GS Bulkhead Tie Rod	A tension-only struc the top of a bulkhead	tural element, used to restrain	EA	FP-CS- BMT	CS Fender Pile	A DECK DECK DECK	al stiffness to the structure.							
01-03- DBR	GS Buikiteau Tie Kou	Line top of a builtheat	a wan.	LA	FP-GS- BMT	GS Fender Pile	bending of the mer	mber. Fender piles are typically nnel bed and braced at their top to	EA						

Inventory Record: Environmental

- Environmental Conditions
 - Site –temperature, relative humidity, airborne chloride content
 - Water --temperature, chloride content, nutrients, microbial activity, and flow velocity
 - **Soil** resistivity, sulfate and chloride content, and pH



Chloride Content in Ship Channel- Barbour's Cut (Source: TCEQ, water quality data from 1974 to 1993)

Inventory Record: Exposure Zones

- **Atmospheric** oxygen, UV, high humidity
- Splash wet/dry cycles, increased ion concentration, highest corrosion rates
- Tidal low drying, variable oxygen, lower corrosion rates compared to splash
- Submerged –lower oxygen availability, lower corrosion rates
- Soils depends on solids, water, gaseous constituents, groundwater, and resistivity

Baseline Inspection Planning

- Which components / elements are present?
 Inventory Record
- Which inspection procedures and scopes are applicable to the asset?
 Inspection Plan
 - Use guidelines in Chapter 2 to develop plan
 - Adjust based on engineering judgement and PHA approval

Corrosion Manual Guidelines for Intervals

Inspection Frequency

Task Classification	Inspection Interval ^[Note 2]	Example Inspection Tasks [Note 1]			
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, per consumption, shunts, etc.) Measure and record on/off structure-to-electrolyte potentials (and/ decay potentials) for cathodic protection systems			
Functionality Checks [Note 3]	l year				
		Verify accessible negative lead-to-structure connections are intact			
Tier 1		Perform above water visual assessment			
Routine	3 years	Obtain above-water thickness measurements of base metal elements			
Inspections		Obtain above-water coating thickness and/or adhesion measurements			
	174242104	Level I underwater visual inspections of anodes			
Tier 2 Routine	6 years	Level II underwater cleaning and visual inspection of anodes and base metal elements			
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements, coatings, and anodes			
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes			

Table 2.1. Guidelines for Maximum Inspection Intervals

Note 1: Underwater inspection levels per ASCE 101

Note 2: Inspection interval for a particular asset is defined in the Inspection Plan. Interval may be reduced for assets with significant deterioration or where dictated by the type or priority of use. Interval may be increased for newly constructed assets or other assets at the discretion of the PHA.

Note 3: Typical functionality checks are as described in NACE SP0169 and SP0176. Note the frequency for Functionality checks has been modified from the referenced standards to meet the needs and desires of PHA.

Note 4: Inspection of buried elements will be as defined in the Inspection Plan. Initial inspection interval will be based on the age

and visual condition of associated elements. The need and frequency of inspection for buried elements will be established based on subsequent inspections.

NDE Testing Intervals

Element Classification	Exposure Zone	Test Intervals ^[Note 1, 2]				
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 50 LF or 20% of elements Coating Thickness and/or Adhesion: Every 50 LF or 20%				
Critical	Submerged	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%				
	Soil	As required				
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%				
Typical	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%				
	Soil	As required				
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%				
Redundant	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%				
	Soil	As required				

Table 2.2 Recommanded Minimum NDF Testing Intervals

Note 1: Individual repeated elements, such as piles, sampled on percentage basis. Large, solid-faced elements, such as bulkhead walls, measured based on plan length (linear foot = LF)

Note 2: A minimum of three test locations should be obtained for each element classification within each exposure zone, with a minimum of three individual readings at a given location (approximately 1 sq. ft.).

Example Inspection Plan: BCT 5

- Define inspection procedures
 - Applicable standards
 - Specific test locations
 - Based on element and exposure zone

5	Cor	Maritime Asset rosion Inspection Plan	Form CMIP (V1.0) Barbours Cut Terminal – BCT 5 Last update: October 11, 2023 Page 1 of 2
Property:	Barbours Cut Terminal	Asset ID:	BCT 5
Asset Type:	Wharf	Year of Original Construction:	1990
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011
	Containerized Cargo	Date of Most Recent Inspection:	April 2020 (above-water) August 2020 (below-water)

Functionality Checks (Inspection Frequency = 6 months)

Measure and record electrical measurements from (3) Transformer-Unit Rectifiers, which includes current
output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year)

- Visual inspection of the nine weld connections between the negative leads and structure (3 to the fender wale beams and 6 to the bulkhead wall)
 - Terminal ring leads for structure and negative leads have good crimp connections
 Inspect for loose or broken wires of structure and negative connections
 - Remove corrosion product from electrical connections if necessary to provide electrical continuity
- Measure and record on/off structure-to-electrolyte potentials to determine polarization decay of base metal elements in general accordance with Test Method 3 of NACE TMO497 to determine if CP is adequate to criterion in NACE SP0169.
 - At a minimum, testing should be performed at the same five locations during the Baseline Inspection;
 - Bays 5, 24, and 47 (near locations of negative structure connections)
 - Bays 14 and 33 (approximately midway between negative structure connections)

Tier 1 Tasks (Inspection Frequency = 3 years)

- · Visual assessment of all accessible corrosion protection and bare metal elements
- Perform non-destructive measurements for elements as specified below. Measurement locations are
 recorded on Corrosion Element Inspection Forms. Readings should be obtained from same locations as
 those during the Baseline Inspection for comparable results.
 - UT Measurements: Prepare Uncoated Surfaces per SSPC- SP 3, SP 11, or as required per device manufacturer
 - Coating Thickness Measurements: Prepare Surfaces per SSPC-SP 1

Element Exposure Zone Required Inspections

CS Tie Rod	Soil	Visually observe encasement concrete. Cracking may be indicative of
		corrosion distress of tie rod.
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations
CS Bulkhead Wall	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
was.		Coating Thickness and/or Adhesion Measurements: 12 locations
	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)

Form CMIP	(V1.0)
Rarbours Gut Terminal -	BCT 5
Last update: October 11	2022
Page	

Element	Exposure Zone	Required Inspections ¹
		Coating Thickness Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
CS Fender		Coating Thickness and/or Adhesion Measurements: 12 locations
Piles	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 5 locations
CS Support	Splash	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
Framing		Coating Thickness Measurements: 8 locations
	Tidal	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations

¹Test locations shall be representative of the condition of the given element within the entire bay. Unless specific conditions were noted during the visual survey or FICAP inspection that warrant acquiring data for specific bays, bays where data is to be exquired are listed below:

- 5 Locations: Bays 5, 14, 24, 33, and 43
- 8 Locations: Bays 3, 9, 15, 22, 29, 35, 41, and 47
- 12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46

Tier 2 Tasks (Inspection Frequency = 6 years)

- Level I underwater diving inspection of anodes as defined in ASCE 101
- 100 percent verification of anode placement and connection of positive lead to each anode
 Level II underwater cleaning and inspection of anodes at 10% of anodes:
- Bays 5, 14, 24, 33, and 43
- Level III underwater thickness and weight measurements of anodes: Bays 5, 24, and 43
- Level III underwater thickness and weight measurements of base metal elements and coatings (shown in Table above)
- o Bays 5, 14, 24, 33, and 43

Tier 3 Tasks

Appendix F

No planned Tier 3 inspections of buried tie rods unless warranted during future inspections.

Rev. No.	Developed by	Date	Verified by	Date	Comments
0	C. Jones	01/27/2020	S. Foster	01/27/2020	Baseline
1	C. Jones	NA	5. Foster	NA	Routine inspection developed
2	S. Foster	10/11/2022		10/11/2022	Updated for 100% Manual

Page 15

5	Cor	Maritime Asset rosion Inventory Record	Form CMIR (V1.0) Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 1 of 8
Property:	Barbours Cut Terminal	Asset ID:	BCT 5
Asset Type:	Wharf	Year of Original Construction:	1990
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011
Wharf Usage:	Containerized Cargo	Date of Last Inventory Record Update:	January 24, 2020
	1	isset Geometric Data	
Area:	36 acres	Deck Elevation above MLT:	18 ft. 0 in.
Structure Length:	1000 ft.	Channel Depth at Fender:	44 ft. 6 in.
Structure Width:	Deck: 108 ft. 9 in.	Channel Depth at Bulkhead:	7 ft. 6 in.

Recommended Access: Pedestrian access to structure top side and landside bulkhead via catwalks; boat access required to channel-side of bulkhead wall (8-foot design clear span between drilled shafts).

Structure Corrosion Protection History

BCT 5 is located near the west end of the Barbour's Cut Terminal along the south side of the channel. The original structural drawings are dated 1989, and wharf construction was completed in 1992. Several noteworthy repairs and modifications performed at various times during the service life of the wharf include the following:

- 2002: Repair and localized recoating of fender system.
- 2004: Repair and localized recoating of fender system.
- 2004: Repair of the crane rail expansion joint.
- 2008: Repair and localized recoating of fender system.
- 2011: Repair and localized recoating of fender system.
- · 2014: Coupon ladder testing program

C107-3

C107-4

Reference Drawing List Drawing Set Title Description Date Pavements and Utilities for Phase 1 of Original Civil and Electrical 27 Aug 1986 Container Terminal No. 5 at Drawings Barbour's Cut - Phase I Sheet Pile Bulkhead for Wharves 16 Feb 1988 Original Construction Drawings for Nos 5 and 6 at Barbour's Cut Bulkhaad

	Nos. 5 and 6 at Barbour's Cut		Bulkhead
	Terminal		
C107-5	Pavements and Utilities for	24 May 1988	Phase 2 of Original Civil and Electrical
	Container Terminal No. 5 at		Drawings
	Barbour's Cut - Phase II		
C107-6	Container Wharf No. 5 at	18 Jul 1989	Original Construction Drawings for
	Barbour's Cut Terminal		Wharf
C107-5	Pavements and Utilities for	20 Sept 1990	Modified Phase 2 of Original Civil and
	Container Terminal No. 5 at		Electrical Drawings
	Barbour's Cut - Phase II		

¹ Significant modifications; Work that altered the structure's footprint, changes structural components, or adds/modifies a corrosion protection or coating system

Significant repairs: Repair work in excess of 10 percent of the area or length of a structural component containing base metal elements or repair work to corrosion protection elements or coatings.

5		itime Asset Inventory Reco	Form CMIR (V1.0 Barbours Cut Terminal – BCT 5 Last update: January 24, 2020 Page 2 of 8
Drawing Set	Title	Date	Description
C107-12	Repair of Fender System at Wharf No. 5	5 Nov 2002	Fender Repair Drawings
C107-13	Repair of Fender System and Potable Water Line	23 Feb 2004	Fender and Utility Repair Drawings
C160-60	Crane Rail Repair	30 Aug 2004	Crane Rail Expansion Joint Repair Drawings
C60-D02-002	Fender System Maintenance at Barbours Cut Terminal	16 Oct 2008	Fender Repair and Maintenance Drawings
C60-D02-005	Annual Fender System Maintenance at Barbours Cut Terminal 2012	3 Oct 2011	Fender Repair and Maintenance Drawings

Asset Exposure Zones

The following exposure zones have been identified at this site, the specific height of the zones and exposure effects have been estimated based on review of environmental conditions and data.

Exposure Zone	Elevation versus MLLW	Elements
Atmospheric	+3.25 ft. or greater	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Splash	+1.25 to +3.25 ft.	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Tidal	+0 to +1.25 ft.	CS Bulkhead Wall, CS Fender Piles, CS Support Framing
Submerged	0 ft. or less	CS Bulkhead Wall, CS Fender Piles
Soil	Below the mudline toward the waterside of the bulkhead and below the pavement on the landward side of the bulkhead	CS Tie Rods, CS Bulkhead Wall, CS Fender Piles

Asset Environmental Conditions Global Zone Constituent Values Temperature January: 54°F, February: 57°F, March: 63°F, April: 70°F, May: 77°F, June: 82°F, July: 84°F, August: 84°F, September: 80°F, October: 72°F, November: 63°F, December: 56°F, Annual: 70°F Site Relative Humidity Annual: 74% Site Atmospheric Chloride 5 to 10 kg / ha/ year Concentration Water Temperature 54°F - 86°F Water **Chloride Concentration** 4,000 - 6,000 ppm Water Additional Nutrients Nitrite Plus Nitrate: 0 - 0.3 ppm, Sulfate: 0 - 1200 ppm Water Resistivity No Data Water Microbial Activity Negligible PCB Congener #52 and #191 Water Flow Velocity No Data Soil Resistivity No Data Soil Sulfate Content No Data Soil Chloride Concentration No Data

Maritime Asset **Corrosion Inventory Record**

Form CMIR (V1.0) Barbours Cut Terminal - BCT 5 Last update: January 24, 2020 Page 3 of 8

Consultant / Source	Title	Date	Description
National	Annual Precipitation -	Accessed 21	Compiled Annual Data for Testing of
Atmospheric	Weighted Mean	May 2019	Precipitation
Deposition Program	Concentrations		
National Weather	Houston Hobby Extremes,	Accessed 21	Summary of Mean, Avg. High, and Avg
Service	Normals, and Annual Summaries	May 2019	Low Temperatures for Houston
Texas Commission	Water Summary Report for	Various Dates	Summary of Water Testing Data for
on Environmental Quality	Segment 2436 (Barbours Cut)		Barbour's Cut
Weatherbase	Monthly - Weather Averages Summary	Accessed 21 May 2019	Summary of Average Temperatures, Precipitation, and Humidity

Form CMIR (V1.0)

Barbours Cut Terminal - BCT 5

Last update: January 24, 2020

Impressed Current Corrosion Protection Elements

Maritime Asset

Corrosion Inventory Record

	A second data second a second s
Component / Element(s)	Description
Bulk Anode	Bulk anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.
- OTH Bulk Anode	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes. Anodes are installed at Elev3.0 and -12.0'.
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note drawings indicate five rectifiers, but only three were installed.
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside of the bulkhead wall adjacent to light poles 8 through 12.
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and is protected by PVC conduit to the landside of the bulkhead wall.
- CU Wiring	No. 6/7 copper wiring connects the corrosion protection system. Positive leads run to the bulk anodes and negative leads are connected to the fender system and bulkhead wall. Negative leads connect the copper conduit to the top fender wale beam and bulkhead wall in three and six locations, respectively.
- PVC Protection	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.

	Surface Protection Elements
Component / Element(s)	Description
Surface Protection	Coatings are used in conjunction with the ICCP system for protection of the bulkhead wall and fender system.
- PU Coatings	A three-coat system is used for protection of the fender system (Epoxy Low and Intermediate Coat with an Acrylic Urethane Topcoat).
- EP Coatings	An epoxy coating system is used for protection of the bulkhead wall (details unknown).

Component /

- CS Tie Rod

- CS Fender Piles

Redundant - CS Support Framing

Element(s) Critical

Typical - CS Bulkhead Wall

Maritime Asset **Corrosion Inventory Record**

Base Metal Components and Elements

Design Cross-Sectional Area = 11.0 in²

Design Web/Flange Thickness = 0.805 in

top wales and W14x43 bottom wales.

2011.

Tie rods, 3-3/4 inch diameter, extending from bulkhead wale beam to dead man,

spaced at approximately 15 feet on center and encased in Schedule 40 PVC

BZ-20 steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown at

HP14x117 piles are extend from Elev. +16.0 to -69.0' and are spaced at 10'-9" on

Structural steel framing used to support the timber facing consisting of W21x111

Design Thickness: W14x43 (bottom)- web = 0.305 in, flange= 0.530 in

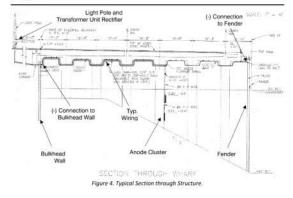
W21x111(top)- web = 0.550 in, flange = 0.875 in HP14x117 (replacements) - web/flange = 0.805 in

Installed in 1990, no documented modifications or repairs. BZ-20

Installed in 1990, no documented modifications or repairs.

Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011. Installed in 1990, modifications and repairs in 2002, 2004, 2008, and

Design Thickness = 0.551 in (flange), 0.394 in (web/wall)


Installed in 1990, no documented modifications or repairs.

Form CMIR (V1.0) Barbours Cut Terminal - BCT 5 Last update: January 24, 2020 Page 5 of 8

Maritime Asset **Corrosion Inventory Record**

Form CMIR (V1.0) Barbours Cut Terminal - BCT 5 Last update: January 24, 2020 Page 8 of 8

R	evisi	ion H	istory
---	-------	-------	--------

Rev. No.	Reported by:	Date	Verified by	Date	Comments
0	C. Jones	01/24/2020	S. Foster	01/24/2020	Baseline
-			-	-	-
		1	_		

*Base Metal Components and Elements identified with FICAP labelling scheme

Description

Casings.

-5.00'.

center. •

PORT HOUSTON THE INTERNATIONAL PORT OF TEXAS*

	Impressed Current Corrosion Protection Elements
Component / Element(s)	Description
Bulk Anode	Bulk anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.
– OTH Bulk Anode	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes. Anodes are installed at Elev3.0 and -12.0'.
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note: drawings indicate five rectifiers, but only three were installed.
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside of the bulkhead wall adjacent to light poles 8 through 12.
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and is protected by PVC conduit to the landside of the bulkhead wall.
- CU Wiring	No. 6/7 copper wiring connects the corrosion protection system. Positive leads run to the bulk anodes and negative leads are connected to the fender system and bulkhead wall. Negative leads connect the copper conduit to the top fender wale beam and bulkhead wall in three and six locations, respectively.
 PVC Protection 	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.

Surface Protection Elements			
Component / Element(s)	Description		
Surface Protection	Coatings are used in conjunction with the ICCP system for protection of the bulkhead wall and fender system.		
 PU Coatings 	A three-coat system is used for protection of the fender system (Epoxy Low and Intermediate Coat with an Acrylic Urethane Topcoat).		
 EP Coatings 	An epoxy coating system is used for protection of the bulkhead wall (details unknown).		

	Base Metal Components and Elements
Component / Element(s)	Description
Critical	
- CS Tie Rod	Tie rods, 3-3/4 inch diameter, extending from bulkhead wale beam to dead mar spaced at approximately 15 feet on center and encased in Schedule 40 PV Casings.
	 Installed in 1990, no documented modifications or repairs. Design Cross-Sectional Area = 11.0 in²
Typical	
 CS Bulkhead Wall 	BZ-20 steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown a -5.00'.
	 Installed in 1990, no documented modifications or repairs. BZ-20 Design Thickness = 0.551 in (flange), 0.394 in (web/wall)
– CS Fender Piles	HP14x117 piles are extend from Elev. +16.0 to -69.0' and are spaced at $10'$ -9" o center.
	 Installed in 1990, no documented modifications or repairs. Design Web/Flange Thickness = 0.805 in
Redundant	
 CS Support Framing 	Structural steel framing used to support the timber facing consisting of W21x11 top wales and W14x43 bottom wales.
	Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011.
	 Installed in 1990, modifications and repairs in 2002, 2004, 2008, an 2011.
	 Design Thickness: W14x43 (bottom)- web = 0.305 in, flange= 0.530 in W21x111(top)- web = 0.550 in, flange = 0.875 in HP14x117 (replacements) - web/flange = 0.805 in

Inspection Plan for BCT 5

- Functionality Checks?
- Tier 1 Inspection Tasks?
- Tier 2 Inspection Tasks?
- Tier 3 Inspection Tasks?

BCT 5: Functionality Checks

Task Inspection Classification Interval ^[Note 2]		Example Inspection Tasks [Note 1]		
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, power consumption, shunts, etc.)		
Checks [Note 3]	l year	Measure and record on/off structure-to-electrolyte potentials (and/or decay potentials) for cathodic protection systems		
		Verify accessible negative lead-to-structure connections are intact		
Tier 1	1000	Perform above water visual assessment		
Routine	3 years	Obtain above-water thickness measurements of base metal element		
Inspections		Obtain above-water coating thickness and/or adhesion measurements		
	6 years	Level I underwater visual inspections of anodes		
Tier 2 Routine		Level II underwater cleaning and visual inspection of anodes and base metal elements		
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements, coatings, and anodes		
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes		

Table 2.1. Guidelines for Maximum Inspection Intervals

Note 1: Underwater inspection levels per ASCE 101

Note 2: Inspection interval for a particular asset is defined in the Inspection Plan. Interval may be reduced for assets with significant deterioration or where dictated by the type or priority of use. Interval may be increased for newly constructed assets or other assets at the discretion of the PHA.

Note 3: Typical functionality checks are as described in NACE SP0169 and SP0176. Note the frequency for Functionality checks has been modified from the referenced standards to meet the needs and desires of PHA.

Note 4: Inspection of buried elements will be as defined in the Inspection Plan. Initial inspection interval will be based on the age and visual condition of associated elements. The need and frequency of inspection for buried elements will be established based on subsequent inspections.

BCT 5: Functionality Checks

- Functionality of ICCP system (6 months)
 - Measurements at (3) Transformer-Unit Rectifiers, which includes current output, voltage output, and functionality
- Functionality of ICCP system (1 year)
 - On/Off Structure-to-Electrolyte Potentials
 - Bays 5, 14, 24, 33, 47 (near negative connections and mid-way between)
 - Specify elevations in the water
 - Visual observations at 9 connections (3 at FP, 6 at BW)

Task Inspection Classification Interval ^[Note 2]		Example Inspection Tasks [Note 1]		
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, power consumption, shunts, etc.)		
Checks [Note 3]	l year	Measure and record on/off structure-to-electrolyte potentials (and/or decay potentials) for cathodic protection systems		
		Verify accessible negative lead-to-structure connections are intact		
Tier 1		Perform above water visual assessment		
Routine	3 years	Obtain above-water thickness measurements of base metal elements		
Inspections	1 Stand on and	Obtain above-water coating thickness and/or adhesion measurements		
		Level I underwater visual inspections of anodes		
Tier 2 Routine	6 years	Level II underwater cleaning and visual inspection of anodes and base metal elements		
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements, coatings, and anodes		
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes		

Table 2.1. Guidelines for Maximum Inspection Intervals

Note 1: Underwater inspection levels per ASCE 101

Note 2: Inspection interval for a particular asset is defined in the Inspection Plan. Interval may be reduced for assets with significant deterioration or where dictated by the type or priority of use. Interval may be increased for newly constructed assets or other assets at the discretion of the PHA.

Note 3: Typical functionality checks are as described in NACE SP0169 and SP0176. Note the frequency for Functionality checks has been modified from the referenced standards to meet the needs and desires of PHA.

Note 4: Inspection of buried elements will be as defined in the Inspection Plan. Initial inspection interval will be based on the age and visual condition of associated elements. The need and frequency of inspection for buried elements will be established based on subsequent inspections.

Element Classification	Exposure Zone	Test Intervals ^[Note 1, 2]		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 50 LF or 20% of elements Coating Thickness and/or Adhesion: Every 50 LF or 20%		
Critical	Submerged	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%		
	Soil	As required		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%		
Typical	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
	Soil	As required		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
Redundant	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
3	Soil	As required		

Note 1: Individual repeated elements, such as piles, sampled on percentage basis. Large, solid-faced elements, such as bulkhead walls, measured based on plan length (linear foot = LF)

Note 2: A minimum of three test locations should be obtained for each element classification within each exposure zone, with a minimum of three individual readings at a given location (approximately 1 sq. ft.).

Base Metal Elements

- Bulkhead Wall (typical) 1,000 LF total
- Fender Piles (typical) 48 total
- Support Framing (redundant)
 2,000 LF total
- Tie Rods (critical) 76 total

Element Classification	Exposure Zone	Test Intervals ^[Note 1, 2]		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 50 LF or 20% of elements Coating Thickness and/or Adhesion: Every 50 LF or 20%		
Critical	Submerged	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%		
	Soil	As required		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 100 LF or 10% of elements Coating Thickness and/or Adhesion: Every 100 LF or 10%		
Typical	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
	Soil	As required		
	Atmospheric / Splash / Tidal	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
Redundant	Submerged	Base Metal Thickness: Every 200 LF or 5% of elements Coating Thickness and/or Adhesion: Every 200 LF or 5%		
	Soil	As required		

Note 1: Individual repeated elements, such as piles, sampled on percentage basis. Large, solid-faced elements, such as bulkhead walls, measured based on plan length (linear foot = LF)

Note 2: A minimum of three test locations should be obtained for each element classification within each exposure zone, with a minimum of three individual readings at a given location (approximately 1 sq. ft.).

Fender Piles

48 \rightarrow 10% (4.8), 5 locations for metal thickness in atmospheric/splash/tidal \rightarrow 5% (2.4), 3 locations for submerged

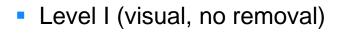
- Visual assessment of all accessible elements
- UT Measurements: Prepare uncoated surfaces per SSPC-SP 3, SP 11, or as required per device manufacturer
- Coating Thickness Measurements: Prepare surfaces per SSPC-SP 1
- Specify elements, locations, exposure zone for measurement and frequency

Element	Exposure Zone	Required Inspections ¹	
CS Tie Rod Soil		Visually observe encasement concrete. Cracking may be indicative of corrosion distress of tie rod.	
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)	
	Attroophene	Coating Thickness and/or Adhesion Measurements: 8 locations	
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)	
CS Bulkhead		Coating Thickness and/or Adhesion Measurements: 12 locations	
Wall	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)	
		Coating Thickness Measurements: 12 locations	
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)	
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations	
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)	
		Coating Thickness and/or Adhesion Measurements: 8 locations	
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)	
CS Fender		Coating Thickness and/or Adhesion Measurements: 12 locations	
Piles	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)	
		Coating Thickness and/or Adhesion Measurements: 12 locations	
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)	
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations	
	Atmospheric	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)	
		Coating Thickness and/or Adhesion Measurements: 5 locations	
CS Support	S Support Splash Ultrasonic Thickness Measurements: 8 locations (each at f		
Framing		Coating Thickness Measurements: 8 locations	
	Tidal	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)	
		Coating Thickness and/or Adhesion Measurements: 8 locations	

Test Locations	
5 Locations: Bays 5, 14, 24, 33, 43	
8 Locations : Bays 3, 9, 15, 22, 29, 35, 41, 47	
12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34	1
38, 42, 46	

Note: BCT5 plan originally developed using earlier version of the manual (separate quantity for atmospheric/splash/tidal)

Task Classification	Inspection Interval ^[Note 2]	Example Inspection Tasks [Note 1]		
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, power consumption, shunts, etc.)		
Checks [Note 3]	l year	Measure and record on/off structure-to-electrolyte potentials (and/or decay potentials) for cathodic protection systems		
-		Verify accessible negative lead-to-structure connections are intact		
Tier 1	3 years	Perform above water visual assessment		
Routine		Obtain above-water thickness measurements of base metal elements		
Inspections		Obtain above-water coating thickness and/or adhesion measurements		
	a and a second	Level I underwater visual inspections of anodes		
Tier 2 Routine	6 years	Level II underwater cleaning and visual inspection of anodes and base metal elements		
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements, coatings, and anodes		
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes		


Table 2.1. Guidelines for Maximum Inspection Intervals

Note 1: Underwater inspection levels per ASCE 101


Note 2: Inspection interval for a particular asset is defined in the Inspection Plan. Interval may be reduced for assets with significant deterioration or where dictated by the type or priority of use. Interval may be increased for newly constructed assets or other assets at the discretion of the PHA.

Note 3: Typical functionality checks are as described in NACE SP0169 and SP0176. Note the frequency for Functionality checks has been modified from the referenced standards to meet the needs and desires of PHA.

Note 4: Inspection of buried elements will be as defined in the Inspection Plan. Initial inspection interval will be based on the age and visual condition of associated elements. The need and frequency of inspection for buried elements will be established based on subsequent inspections.

- Level II (10%, partial removal, visual)
- Level III (5%, NDT measurements)

- Anodes
 90 element,180 total (2 each)
- Bulkhead wall (typical) 1,000 LF total
- Fender Piles (typical) 48 total

Level II, $10\% \rightarrow 47$ bays total, 5 bays for cleaning and inspection Level III, $5\% \rightarrow 3$ bays for thickness/weight

BCT 5: Tier 3 Inspection Tasks

Task Classification	Inspection Interval ^[Note 2]	Example Inspection Tasks [Note 1]		
Functionality	6 months	Verify functionality of ICCP system (current output, frequency, power consumption, shunts, etc.)		
Checks [Note 3]	l year	Measure and record on/off structure-to-electrolyte potentials (and/or decay potentials) for cathodic protection systems		
		Verify accessible negative lead-to-structure connections are intact		
Tier 1	3 years	Perform above water visual assessment		
Routine		Obtain above-water thickness measurements of base metal elements		
Inspections		Obtain above-water coating thickness and/or adhesion measurements		
	6 years	Level I underwater visual inspections of anodes		
Tier 2 Routine		Level II underwater cleaning and visual inspection of anodes and base metal elements		
Inspections		Level III underwater cleaning and remaining thickness/weight measurement of base metal elements coatings and anodes		
Tier 3 Routine Inspections	As Required ^[Note 4]	Visual inspection and thickness measurements of buried base metal elements or CP anodes		

Table 2.1 Cuidelines for Maximum Inspection Intervals

Note 1: Underwater inspection levels per ASCE 101

Note 2: Inspection interval for a particular asset is defined in the Inspection Plan. Interval may be reduced for assets with significant deterioration or where dictated by the type or priority of use. Interval may be increased for newly constructed assets or other assets at the discretion of the PHA.

Note 3: Typical functionality checks are as described in NACE SP0169 and SP0176. Note the frequency for Functionality checks has been modified from the referenced standards to meet the needs and desires of PHA.

Note 4: Inspection of buried elements will be as defined in the Inspection Plan. Initial inspection interval will be based on the age and visual condition of associated elements. The need and frequency of inspection for buried elements will be established based on subsequent inspections.

Tie Rods

- 1990, 30 years old, 3-3/4" dia., encased in **PVC**
- No indication of failure per FICAP Maritime **Structures**
- No inspections of buried tie rods unless warranted during future inspections

Inspection Plan for BCT 5

5	Corr	Maritime Asset rosion Inspection Plan	Form CMIP (V1. Barbours Cut Terminal – BCT Last update: October 11, 202 Page 1 of	
Property:	Barbours Cut Terminal	Asset ID:	BCT 5	
Asset Type:	Wharf	Year of Original Construction:	1990	
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011	
Wharf Usage:	Containerized Cargo	Date of Most Recent Inspection:	April 2020 (above-water) August 2020 (below-water)	

Functionality Checks (Inspection Frequency = 6 months)

Inspection Plan Measure and record electrical measurements from (3) Transformer-Unit Rectifiers, which includes current output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year)

- · Visual inspection of the nine weld connections between the negative leads and structure (3 to the fender wale beams and 6 to the bulkhead wall)
 - o Terminal ring leads for structure and negative leads have good crimp connections
 - 0 Inspect for loose or broken wires of structure and negative connections
 - Remove corrosion product from electrical connections if necessary to provide electrical 0 continuity
- Measure and record on/off structure-to-electrolyte potentials to determine polarization decay of base metal elements in general accordance with Test Method 3 of NACE TM0497 to determine if CP is adequate to criterion in NACE SP0169.
 - o At a minimum, testing should be performed at the same five locations during the Baseline Inspection:
 - Bays 5, 24, and 47 (near locations of negative structure connections)
 - Bays 14 and 33 (approximately midway between negative structure connections)

Tier 1 Tasks (Inspection Frequency = 3 years)

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS"

- Visual assessment of all accessible corrosion protection and bare metal elements
- Perform non-destructive measurements for elements as specified below. Measurement locations are recorded on Corrosion Element Inspection Forms. Readings should be obtained from same locations as those during the Baseline Inspection for comparable results.
 - UT Measurements: Prepare Uncoated Surfaces per SSPC- SP 3, SP 11, or as required per device manufactures
 - Coating Thickness Measurements: Prepare Surfaces per SSPC-SP 1

Element Exposure Zone Required Inspections¹

CS Tie Rod	Soil	Visually observe encasement concrete. Cracking may be indicative of
		corrosion distress of tie rod.
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
CS Bulkhead		Coating Thickness and/or Adhesion Measurements: 8 locations
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
Wall		Coating Thickness and/or Adhesion Measurements: 12 locations
	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)

Maritime Asset **Corrosion Inspection Plan**

Barbours Cut Terminal - BCT 5

Form CMIP (V1.0) Last update: October 11, 2022 Page 2 of 2

Element	Exposure Zone	Required Inspections ¹
		Coating Thickness Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
CS Fender		Coating Thickness and/or Adhesion Measurements: 12 locations
Piles	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 5 locations
CS Support	Splash	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
Framing		Coating Thickness Measurements: 8 locations
	Tidal	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
	762/2005/5	Coating Thickness and/or Adhesion Measurements: 8 locations

¹Test locations shall be representative of the condition of the given element within the entire bay. Unless specific conditions were noted during the visual survey or FICAP inspection that warrant acquiring data for specific bays. bays where data is to be acquired are listed below:

- 5 Locations: Bays 5, 14, 24, 33, and 43
- 8 Locations: Bays 3, 9, 15, 22, 29, 35, 41, and 47
- 12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46

Tier 2 Tasks (Inspection Frequency = 6 years)

- Level I underwater diving inspection of anodes as defined in ASCE 101 100 percent verification of anode placement and connection of positive lead to each anode.
- Level II underwater cleaning and inspection of anodes at 10% of anodes: o Bays 5, 14, 24, 33, and 43
- · Level III underwater thickness and weight measurements of anodes: Bays 5, 24, and 43
- Level III underwater thickness and weight measurements of base metal elements and coatings (shown in . Table above)
 - o Bays 5, 14, 24, 33, and 43

Tier 3 Tasks

.

No planned Tier 3 inspections of buried tie rods unless warranted during future inspections.

	Revision History						
Rev. No.	Developed by	Date	Verified by	Date	Comments		
0	C. Jones	01/27/2020	5. Foster	01/27/2020	Baseline		
1	C. Jones	NA	5. Foster	NA	Routine inspection developed		
2	S. Foster	10/11/2022		10/11/2022	Updated for 100% Manual		
	-						

Module Wrap-Up

- Engineer (Project Manager and/or Inspection Team Leader) develops asset-specific Corrosion Inspection Plan
- Inspection Planning for Baseline Inspection
 - Inventory Record
 - Drawings
 - Asset-Specific Inspection Plan
- Summarizes what the inspection team needs to do

END OF MODULE

Module 5.2

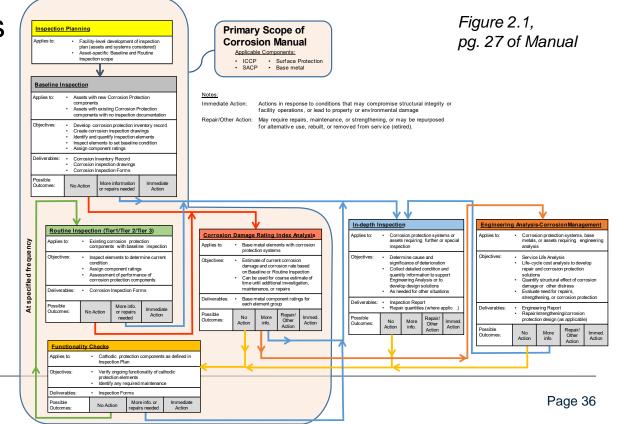
Routine Inspection Planning

Corrosion Manual Training Course

Module Objectives

Module 5.2 Learning Outcomes

- Understand primary differences between Baseline and Routine inspections
- Modify a Corrosion Inspection Plan based on inspection findings


Inspection Types

- Baseline
- Routine

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS

 Functionality Checks

Only modify plan if needed

- Changes to components/elements
- Deviations from previous inspection
- Something missing or incorrect
- Observations from previous/current inspection

Corrosion Protection Components

- Are all corrosion protection components the same?
- Have any corrosion protection elements been added, changed, or removed since last inspection?
- Identify current age(s)
- Is everything correct?

	Impressed Current Corrosion Protection Elements
Component / Element(s)	Description
Bulk Anode	Bulk anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.
 OTH Bulk Anode 	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes Anodes are installed at Elev3.0 and -12.0'.
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note drawings indicate five rectifiers, but only three were installed.
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside o the bulkhead wall adjacent to light poles 8 through 12.
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and i protected by PVC conduit to the landside of the bulkhead wall.
- CU Wiring	No. 6/7 copper wiring connects the corrosion protection system. Positive leads run to the bulk anodes and negative leads are connected to the fender system and bulkhead wall. Negative leads connect the copper conduit to the top fender wale beam and bulkhead wall in three and six locations, respectively.
 PVC Protection 	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.

	Surface Protection Elements
Component / Element(s)	Description
Surface Protection	Coatings are used in conjunction with the ICCP system for protection of the bulkhead wall and fender system.
 PU Coatings 	A three-coat system is used for protection of the fender system (Epoxy Low and Intermediate Coat with an Acrylic Urethane Topcoat).
 EP Coatings 	An epoxy coating system is used for protection of the bulkhead wall (details unknown).

Base Metal Component

- Are all base metal elements and materials the same?
- Have any base metal elements been added, changed, or removed since last inspection?
- Identify current age(s)
- Is everything correct?

Component / Element(s)	Description
Critical	and the second sec
- CS Tie Rod	Tie rods, 3-3/4 inch diameter, extending from bulkhead wale beam to dead man spaced at approximately 15 feet on center and encased in Schedule 40 PVI Casings.
	 Installed in 1990, no documented modifications or repairs. Design Cross-Sectional Area = 11.0 in²
Typical	
- CS Bulkhead Wall	BZ-20 steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown a -5.00'.
	 Installed in 1990, no documented modifications or repairs. BZ-20 Design Thickness = 0.551 in (flange), 0.394 in (web/wall)
- CS Fender Piles	HP14x117 piles are extend from Elev. +16.0 to -69.0' and are spaced at 10'-9" or center.
	 Installed in 1990, no documented modifications or repairs. Design Web/Flange Thickness = 0.805 in
Redundant	
- CS Support Framing	Structural steel framing used to support the timber facing consisting of W21x11 top wales and W14x43 bottom wales.
	Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011.
	 Installed in 1990, modifications and repairs in 2002, 2004, 2008, and 2011.
	 Design Thickness: W14x43 (bottom)- web = 0.305 in, flange= 0.530 in W21x111(top)- web = 0.550 in, flange= 0.875 in HP14x117 (replacements) - web/flange= 0.805 in

- Are inspection procedures and scopes in most recent inspection plan still applicable to the asset?
- Did any follow-up actions warrant revision to the inspection plan?

Maritime Asset Follow-up Actions Form MSFA (V1.1) Northside Turning Basin – CD 25 July 30, 2021 Page 5 of 5

	Follow-up Actions Log				
ltem No.	Priority	Recommended Action	Assigned To	Assigned By	Date
1	Priority	Replace anodes and adjust rectifier current outputs to provide adequate CP of base metal elements	РНА	WJE	July 30, 2021
2	Routine	Repair electrical bond wires between fender piles and support framing	РНА	WJE	July 30, 2021
3	Routine	Clean and coat fender pile and support framing elements in the tidal and splash zone.	РНА	WJE	July 30, 2021
4	Routine	Monitor coating defects of bulkhead wall in future inspections.	РНА	WJE	July 30, 2021

- Update detailed inspection procedures as necessary
- Separate tasks into tiers and assign inspection frequencies

5	Con	Maritime Asset rosion Inspection Plan	Form CMIP (V1.0 Barbours Cut Terminal – BCT Last update: October 11, 202 Page 1 of	
Property:	Barbours Cut Terminal	Asset ID:	BCT 5	
Asset Type:	Wharf	Year of Original Construction:	1990	
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011	
Wharf Usage:	Containerized Cargo	Date of Most Recent Inspection:	April 2020 (above-water) August 2020 (below-water)	

Functionality Checks (Inspection Frequency = 6 months)

 Measure and record electrical measurements from (3) Transformer-Unit Rectifiers, which includes current. output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year)

- · Visual inspection of the nine weld connections between the negative leads and structure (3 to the fender wale beams and 6 to the bulkhead wall)
 - o Terminal ring leads for structure and negative leads have good crimp connections Inspect for loose or broken wires of structure and negative connections
 - Remove corrosion product from electrical connections if necessary to provide electrical continuity
- Measure and record on/off structure-to-electrolyte potentials to determine polarization decay of base metal elements in general accordance with Test Method 3 of NACE TMD497 to determine if CP is adequate to criterion in NACE SP0169
 - 0 At a minimum, testing should be performed at the same five locations during the Baseline Inspection
 - · Bays 5, 24, and 47 (near locations of negative structure connections)
 - Bays 14 and 33 (approximately midway between negative structure connections)

Tier 1 Tasks (Inspection Frequency = 3 years)

- · Visual assessment of all accessible corrosion protection and bare metal elements
- · Perform non-destructive measurements for elements as specified below. Measurement locations are recorded on Corrosion Element Inspection Forms. Readings should be obtained from same locations as those during the Baseline Inspection for comparable results.
 - UT Measurements: Prepare Uncoated Surfaces per SSPC-SP 3, SP 11, or as required per device manufacturer
 - Coating Thickness Measurements: Prepare Surfaces per SSPC-SP 1

Element Exposure Zone Required Inspections¹

CS Tie Rod	Soil	Visually observe encasement concrete. Cracking may be indicative of
		corrosion distress of tie rod.
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
CS Bulkhead		Coating Thickness and/or Adhesion Measurements: 8 locations
Wall	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
vy all		Coating Thickness and/or Adhesion Measurements: 12 locations
	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)

Form CMIP (V1.0) Rarbours Cut Terminal - BCT 5 Last update: October 11, 2022

Page 2 of 2

Element	Exposure Zone	Required Inspections ¹
		Coating Thickness Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
CS Fender		Coating Thickness and/or Adhesion Measurements: 12 locations
Piles	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 5 locations
CS Support	Splash	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
Framing		Coating Thickness Measurements: 8 locations
	Tidal	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations

Test locations shall be representative of the condition of the given element within the entire bay. Unless specific conditions were noted during the visual survey or FICAP inspection that warrant acquiring data for specific bays, bays where data is to be acquired are listed below:

- 5 Locations: Bays 5, 14, 24, 33, and 43
- 8 Locations: Bays 3, 9, 15, 22, 29, 35, 41, and 47.
- 12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46

Tier 2 Tasks (Inspection Frequency = 6 years)

- Level I underwater diving inspection of anodes as defined in ASCE 101
- o 100 percent verification of anode placement and connection of positive lead to each anode Level II underwater cleaning and inspection of anodes at 10% of anodes:
- o Bays 5, 14, 24, 33, and 43
- Level III underwater thickness and weight measurements of anodes: o Bays 5, 24, and 43.
- Level III underwater thickness and weight measurements of base metal elements and coatings (shown in Table above)
- o Bays 5, 14, 24, 33, and 43

Tier 3 Tasks

No planned Tier 3 inspections of buried tie rods unless warranted during future inspections.

Rev. No.	Developed by	Date	Verified by	Date	Comments
0	C. Jones	01/27/2020	S. Foster	01/27/2020	Baseline
1	C. Jones	NA	5. Foster	NA	Routine inspection developed
2	S. Foster	10/11/2022		10/11/2022	Updated for 100% Manual

- Update requirements of quantitative tests
 - Based on findings of baseline inspection
 - Show specific locations

ORT HOUSTON

INTERNATIONAL PORT OF TEXAS

5	Corr	Maritime Asset osion Inspection Plan	Form CMIP (V1.0 Barbours Cut Terminal - BCT Last update: October 11, 202 Page 1 of 2	
Property:	Barbours Cut Terminal	Asset ID:	BCT 5	
Asset Type:	Wharf	Year of Original Construction:	1990	
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011	
Wharf Usage:	Containerized Cargo	Date of Most Recent	April 2020 (above-water) August 2020 (below-water)	

Functionality Checks (Inspection Frequency = 6 months)

Measure and record electrical measurements from (3) Transformer-Unit Rectifiers, which includes current
output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year)

- Visual inspection of the nine weld connections between the negative leads and structure [3 to the fender wale beams and 6 to the bulkhead wall]
 - Terminal ring leads for structure and negative leads have good crimp connections
 Inspect for loose or broken wires of structure and negative connections
 - Remove corrosion product from electrical connections if necessary to provide electrical continuity
- Measure and record on/off structure-to-electrolyte potentials to determine polarization decay of base metal elements in general accordance with Test Method 3 of NACE TM0497 to determine if CP is adeguate to criterion in NACE SP0169.
 - At a minimum, testing should be performed at the same five locations during the Baseline Inspection;
 - Bays 5, 24, and 47 (near locations of negative structure connections)
 - Bays 14 and 33 (approximately midway between negative structure connections)

Tier 1 Tasks (Inspection Frequency = 3 years)

- · Visual assessment of all accessible corrosion protection and bare metal elements
- Perform non-destructive measurements for elements as specified below. Measurement locations are
 recorded on Corrosion Element Inspection Forms. Readings should be obtained from same locations as
 those during the Baseline Inspection for comparable results.
 - UT Measurements: Prepare Uncoated Surfaces per SSPC- SP 3, SP 11, or as required per device manufacturer

Coating Thickness Measurements: Prepare Surfaces per SSPC-SP 1

Element	Exposure Zone	Required Inspections ¹
CS Tie Rod	Soll	Visually observe encasement concrete. Cracking may be indicative of corrosion distress of tie rod.
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
CS Bulkhead		Coating Thickness and/or Adhesion Measurements: 8 locations
Wall	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web) Coating Thickness and/or Adhesion Measurements: 12 locations
	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)

		Maritime Asset Corrosion Inspection Plan	Form CMIP (V1.0 Barbours Cut Terminal – BCT Last update: October 11, 202 Bare 2 of
Element	Exposure Zone	Required Inspections ¹	12200
		Coating Thickness Measurements: 12 locar	
	Submerged	Ultrasonic Thickness Measurements: 5 loc	
	(Tier 2)	Coating Thickness and/or Adhesion Measu	
	Atmospheric	Ultrasonic Thickness Measurements: 8 loc	
	Falsak	Coating Thickness and/or Adhesion Measu	
CS Fender	Splash	Ultrasonic Thickness Measurements: 12 lo	
	- 10 C	Coating Thickness and/or Adhesion Measu	
Piles	Tidal	Ultrasonic Thickness Measurements: 12 lo Coating Thickness and/or Adhesion Measu	
	Submerged	Ultrasonic Thickness Measurements: 5 loc	
	(Tier 2)	Coating Thickness and/or Adhesion Measu	
	Atmospheric	Ultrasonic Thickness Measurements: 5 loc	
		Coating Thickness and/or Adhesion Measu	
CS Support	Splash	Ultrasonic Thickness Measurements: 8 loc	
Framing		Coating Thickness Measurements: 8 locati	ions
	Tidal	Ultrasonic Thickness Measurements: 8 loc	ations (each at flange and web)
		Coating Thickness and/or Adhesion Measu	irements- 8 locations

¹Test locations shall be representative of the condition of the given element within the entire bay. Unless specific conditions were noted during the visual survey or FICAP inspection that warrant acquiring data for specific bays, bays where data is to be exquired are listed below:

- 5 Locations: Bays 5, 14, 24, 33, and 43
- 8 Locations: Bays 3, 9, 15, 22, 29, 35, 41, and 47
- 12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46

Tier 2 Tasks (Inspection Frequency = 6 years)

- Level I underwater diving inspection of anodes as defined in ASCE 101
- 100 percent verification of anode placement and connection of positive lead to each anode
 Level II underwater cleaning and inspection of anodes at 10% of anodes:
- Bays 5, 14, 24, 33, and 43
- Level III underwater thickness and weight measurements of anodes: Bays 5, 24, and 43
- Level III underwater thickness and weight measurements of base metal elements and coatings (shown in Table above)
- Bays 5, 14, 24, 33, and 43

Tier 3 Tasks

No planned Tier 3 inspections of buried tie rods unless warranted during future inspections.

Rev. No.	Developed by	Date	Verified by	Date	Comments
0	C. Jones	01/27/2020	S. Foster	01/27/2020	Baseline
1	C. Jones	NA	5. Foster	NA	Routine inspection developed
2	S. Foster	10/11/2022	1	10/11/2022	Updated for 100% Manual

Module Wrap-Up

- When do you modify an inspection plan?
 - Addition and/or modification of existing systems
 - Change in conditions/performance/risk
- Who is responsible for determining appropriateness of modifying inspection plan?
 - Engineer (Project Manager and/or Inspection Team Leader)
- What are two different inspection techniques that may require different time intervals between inspections?
 - Underwater inspections vs Functionality Checks

END OF MODULE

Module 6.1

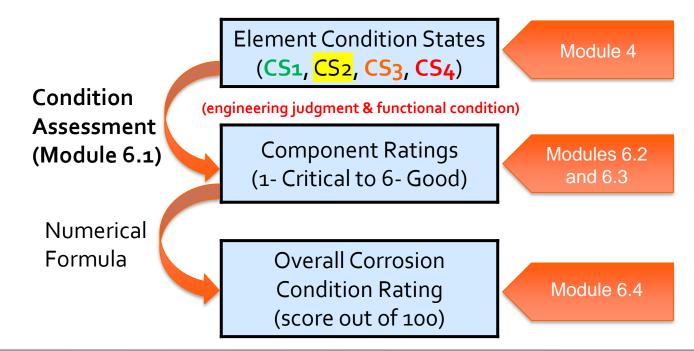
Condition Assessment and Rating Approach

Corrosion Manual Training Course

Module Objectives

Module 6.1 Learning Outcomes

- Summarize approach to corrosion condition assessments for Port Houston
- Outline methodology for numerical ratings of components and scoring for assets



Module References

- Chapter 6: Assessment and Rating Approach
- Chapter 8: Documentation and Reporting
 - 8.5 Corrosion Inspection Summary
- Appendix F: Documentation and Reporting Forms

Overview of Rating Approach

Element Based Approach

Elements:

 Condition States based on Inspection

Components:

 Numerical rating based on judgment and functional condition

Asset

 Corrosion Condition Rating (based on component ratings)

Level	Purpose	Comment
Asset	 Corrosion assessment for asset guides follow-up actions and asset management decisions. 	 Overall corrosion condition rating (CCR) is a numerical rating and is supplemented by a qualitative (descriptive) assessment.
Component	 Component condition assessment indicates condition of corrosion protection or base metal components. Where appropriate, inspection measurements provide basis for overall component condition. Provide basis to determine overall corrosion condition. 	 Numerical component rating is based on an engineering interpretation of the element condition states, inspection data, and their corresponding implication(s) on the functional condition of the component. Base metal component rating is based on the estimated corrosion damage rating index of critical, traical and radundant elements
Element	 Condition states document occurrence of damage, deterioration, or defects at time of inspection in terms of: Type of condition(s) (i.e. damage mechanism) Severity of defect (i.e. moderate, severe) Extent of defect (i.e. localized or general) Correlates conditions to element and material type. Tracks conditions over time as indicated by inspections conducted at regular intervals. Selective measurements of key parameters provide basis for corrosion damage rating index of overall component. Provides basis for component rating. 	 Detailed visual inspections are conducted at the element level. Element condition states are assigned based on predefined categories and quantified to define element condition.

Element Condition States

Observed damage/distress

- Type, Severity, Quantity
- Provide a consistent, credible indication of each element
- Used by Engineer for Condition Assessment of Components

				Condition States			
Туре	Code	Condition Name	Condition Definition	CS1 (Good)	CS2 (Fair)	CS3 (Poor)	CS4 (Severe)
	CNSM	Consumption	Consumption of anode.	<10% consumed by weight	10-50% consumed by weight	51-75% consumed by weight	>75% consumed by weight
	CONA	Condition of Connection	Condition of thermite weld connecting anode to the wiring.	No connection distress; connection is in place and functioning as intended.	Minor distress without distortion is present, but connection is in place and functioning as intended.	Cracked weld or damaged connection; assessment has determined electrical connection has not been compromised.	Cracked weld or failed connection resulting in electrical isolation of the anode.
Anodes	MARG	Marine Growth	Organic growth on bulk and/or ribbon anodes.	No marine growth present.	Minor marine growth on anode.	Moderate marine growth on anode that may affect functionality.	Significant marine growth on anode affecting functionality.
	MISS	Missing	Element intended to be in place is missing. Does not apply to elements that have	Element is present.	Parts of an element are missing, however does not affect functionality.	Element is missing but assessment has determined element is	Element is missing.

Elements -> Component Ratings

Element Condition States

- Specific to each element
 - Type of distress <u>at that</u> <u>element</u>
 - Severity of distress <u>at that</u> <u>element</u>
 - Amount of distress <u>for that</u> <u>element</u>

Component Ratings

- Representative of numerous and varied elements
 - Severity and extent of conditions <u>across numerous</u> <u>elements</u>
 - Implications of conditions <u>on</u> <u>overall performance</u>

Elements -> Component Ratings

 In spite of quantitative element condition information, the relationship between element condition and component rating is <u>not</u> quantitative

 influence of element conditions on component condition depends on many complex factors
 no formula!

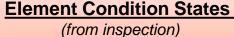
Component condition must be determined through an <u>engineering interpretation</u> of the effect of the element condition on the component condition.

Component Condition Assessment

(Engineering Interpretation of Inspection Findings)

- Condition of corrosion protection or base metal components
- Inspection measurements provide basis for overall component condition
- Provide basis to determine overall corrosion condition

Inputs


Engineering Knowledge Base

(Education and Experience)

- Corrosion Protection Systems
- Components
- Material Types
- Associated Deficiencies

Component Condition

- Extent and severity of damage
- Effect on structural or functional performance
- Need for maintenance or repair

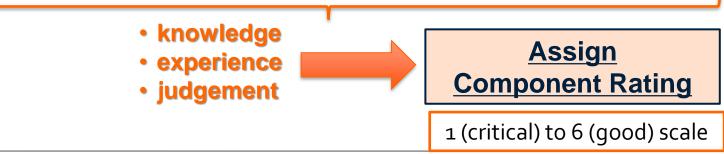
- Type of damage
- Severity of damage
- Extent of damage

Component Details

Inputs

Outcome

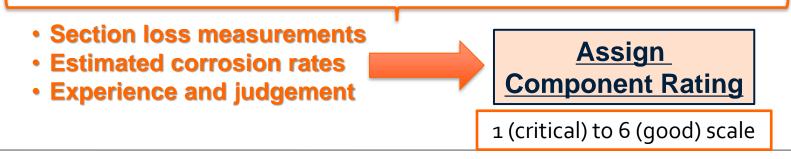
(from asset record)

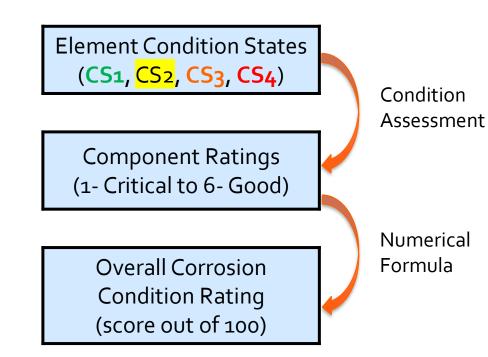

Inputs

- Structure Corrosion Protection History
- Corrosion Components & Elements
- Base Metal Element Exposure Zones

Component Ratings

Corrosion Protection Component Rating


- Functional Rating: Numerical rating to indicate functional condition of ICCP/SACP systems
- Visual Condition Rating: Based on engineering interpretation of element conditions


Component Ratings

- Base Metal Component Rating (Corrosion Damage <u>Rating</u>)
 - Based on thickness measurements and an estimate of the corrosion rate
 - Visual observation is important to ascertain representative locations are selected for measurement

Summary

- Element condition based on visual and quantitative data
- Engineering judgment used to determine component ratings (1 to 6 scale)
- Corrosion Condition Rating based on numerical formula (Deductions for any components rated less than 6-Good)

END OF MODULE

Module 6.2

Corrosion Protection Component Ratings

Corrosion Manual Training Course

Module Objectives

Module 6.2 Learning Outcomes

- Summarize rating process for corrosion protection components (ICCP, SACP, and Surface Protection)
- Discuss implication of element condition states (type, severity, and extent) on component condition rating
- Employ engineering judgement to assign component ratings
- Describe use of Corrosion Inspection Summary Form to record component rating information

Corrosion Component Ratings

Applicable to Baseline, Routine and Functionality Check Inspections

- May be applied to In-Depth Inspections
- Corrosion Component Ratings are:
 - Assigned relative to assumed **as-built condition** of component
 - Intended to reflect physical conditions including the effects of deterioration or damage
 - Indicator of: Is component performing its functional purpose? Is the condition going to lead to deterioration of base elements?

Corrosion Component Ratings

 Component ratings are based on an <u>evaluation</u> of element inspection results considering <u>significance</u> of observed conditions

- Based on engineering judgment, knowledge & experience
- Considers qualitative and quantitative inspection findings
- May be supplemented by calculations

(CS1, <mark>CS2</mark>, CS3, CS4)

Element Condition States

Component Ratings (1- Critical to 6- Good)

Overall Corrosion Condition Rating (score out of 100)

Corrosion Component Ratings

- Once the condition assessment has established the component condition, a Component Rating is assigned
 - Baseline, Routine, and Functionality Check Inspections
 - Scale of 1 to 6 (Critical to Good)
 - Different rating scales for:
 - ICCP components
 - SACP components

Corrosion Manual 6.2.1 – 6.2.2

- Surface Protection Components
- Consider both visual findings and functional performance

CP Component Ratings

Rating descriptions include language to address:

- Functional ratings and visual condition ratings
- Overall performance with respect to industry standards
- How various elements within cathodic protection are working together to provide intended protection

 <u>Functional Rating</u>: Based on NACE standards and field measurements to ensure functionality

Visual Rating: Visual observation / measurements of elements

CP Component Functional Ratings

- 6 Good
- 5 Satisfactory
- 4 Fair
- 3 Poor
- 2 Serious
- 1 Critical

Rating	Description		
6 Good	One of the following criteria is met at all test locations:		
	 A negative (cathodic) voltage of -850 mV CSE (millivolt versus copper/copper sulfar reference electrode) or more negative between metal elements and the electrolyte, withour risk of hydrogen embrittlement. 		
	 A minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay. 		
	 Test coupons are used to otherwise demonstrate adequate corrosion protection is bein applied to the structure.* 		
	 For reinforced concrete elements, the depolarized potential of the steel in wet saturate concrete is more negative than -720 mV CSE with the anode disconnected for a minimum of 24 hours, or a minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay 		
5 Satisfactory	One of the above criteria is met at least at 80 percent of the test locations. Damage, electric malfunctions, or deterioration have affected the functionality of the ICCP or SACP syste such that the above criteria are not met at limited locations. Potential for overprotection coating damage may be noted at some locations, but metals have low risk of embrittlement.		
4 Fair	One of the above criteria is met for at least 50 percent of the test locations. The system i partially functional but may not be providing adequate corrosion protection to some base meta elements (or reinforced concrete elements, if applicable). Metals with high risk of stee embrittlement are subject to cathodic overprotection (instant off voltage more negative that -1,000 mV CSE). Coatings with high risk of disbondment are subject to cathodic overprotection (Instant off voltage more negative than -1200 mV CSE).		
3 Poor	One of the above criteria are met at less than 50 percent of the test locations. Widespreat performance deficiencies are observed for the cathodic protection systems.		
2 Serious	One of the above criteria is met at less than 10 percent test locations. Evidence of nonfunctiona cathodic protection system is noted at most locations.		
1 Critical	ICCP or SACP system is not functional or is not providing corrosion protection at any te- locations as intended.		

*Reference NACE SP0104, Standard Practice: The Use of Coupons for Cathodic Protection Monitoring Applications. If corrosion rate is used as an evaluating metric, the corrosion rate should be no greater than 2 mpy to achieve a rating of 6- Good.

CP Component Visual Ratings

- Visual rating may score higher or lower than the functional rating
- Functional and visual ratings are weighted and scored differently for CCR

Rating	Description	
6 Good	Very minor or no problems observed. Also applies to newly constructed or rehabilitate protective components.	
5 Satisfactory	Limited minor defects, damage, or deterioration - not extensive to multiple elements.	
4 Fair	Extensive minor or limited moderate defects, damage, or deterioration. All primary elements and their attachment to the asset are sound and functional purpose/use of the component is not affected. Minor repairs or maintenance may be required.	
3 Poor	Extensive moderate defects, damage or deterioration that affects functional purpose/use of the component or compromises attachment of the component to the asset.	
2 Serious	Defects, damage, or deterioration significantly affect functional purpose/use of the component.	
1 Critical	Advanced damage or deterioration expected to result in failure(s) of component to provide adequate protection. The component can no longer serve its functional purpose/use and/or conditions are present that may lead to imminent failure of the ICCP system.	
	ment Types: Anodes, Supplementary Anode Materials, DC Power Supply, Monitoring ing and Protection, Cathodic Protection Jackets, CP Supports	

Surface Protection Component Ratings

- Typical element groups
 - Coatings
 - Wraps
 - Spray Metallizing
- Based on visual observations and measurements/testing

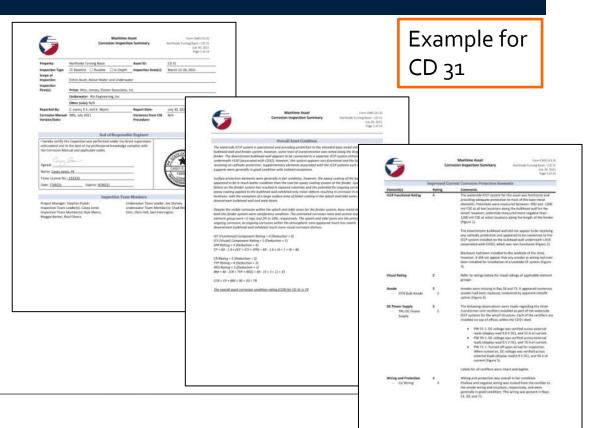

Rating	Description	
6 Good	Very minor or no problems observed. Also applies to newly constructed or rehabilitated components.	
5 Satisfactory	Limited minor defects, damage, or deterioration such as chalking, blushing, blistering, etc. not extensive.	
4 Fair	Extensive minor or limited moderate defects, damage, or deterioration. Coating, wrap, and/o metalizing may be peeling or missing in localized areas.	
3 Poor	Extensive moderate defects, damage or deterioration. Coating, wrap, and/or metalizing may be peeling or missing in not more than 50 percent of coated surfaces.	
2 Serious	Defects, damage or deterioration has significantly reduced protection of base steel elements. Coatings, wraps, and/or metalizing elements are only providing protection in localized locations.	
1 Critical	Advanced defects, damage, or deterioration categorized as a systematic coating failure. Coatings, wraps, and/or metalizing elements do not protect base metal elements.	
Applicable Element Types: Coatings, Wraps, and Spray Metalizing		

Table 6.3. Ratings for Surface Protection Components

Documenting and Reporting

- Corrosion protection component ratings included on:
 - Inspection History Form
 - Inspection Summary Form
 - PHA Database

Inspection Summary Form

Example for CD 31

5	Maritime Asset Corrosion Inspection Summary
	Impressed Current Corrosion Protection Elements

Rating

5

5

Element(s)

Functional

Rating

Visual

Rating

(overall)

Visual Rating

OTH Bulk Anode

ORT HOUSTON

Anode

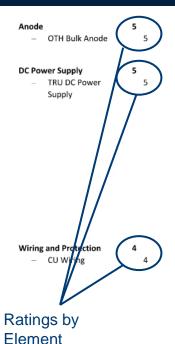
(overall)

ICCP Functional Rating

Comments The waterside ICCP system for this asset was functional and providing adequate protection to most of the base metal elements. Potentials were measured between -850 and -1200 mV CSE at all test locations along the bulkhead wall for the wharf, however, potentials measured more negative than -1200 mV CSE at select locations along the length of the fender (Figure 1).

Form CMIS (V1.0)

July 30, 2021 Page 3 of 14


Northside Turning Basin - CD 31

The downstream bulkhead wall did not appear to be receiving any cathodic protection and appeared to be connected to the ICCP system installed on the bulkhead wall underneath I-610 (associated with CD32), which was non-functional (Figure 2).

Blockouts had been installed to the landside of the shed, however, it did not appear that any anodes or wiring had ever been installed for installation of a landside CP system (Figure 3).

Refer to ratings below for visual ratings of applicable element groups.

Anodes were missing in Bay 56 and 73. It appeared numerous anodes had been replaced, evidenced by apparent retrofit splices (Figure 4).

Group/Type

Anodes were missing in Bay 56 and 73. It appeared numerous anodes had been replaced, evidenced by apparent retrofit splices (Figure 4).

The following observations were made regarding the three transformer-unit rectifiers installed as part of the waterside ICCP systems for the wharf structure. Each of the rectifiers are installed on top of offices within the CD31 shed.

- PW 51-1: DC voltage was verified across external leads (display read 9.6 V DC), and 52 A of current.
- PW 59-1: DC voltage was verified across external leads (display read 9.5 V DC), and 70 A of current.
- PW 71-1: Turned off upon arrival for inspection. When turned on, DC voltage was verified across external leads (display read 6.9 V DC), and 50 A of current (Figure 5).

Labels for all rectifiers were intact and legible.

Wiring and protection was overall in fair condition. Positive and negative wiring was routed from the rectifier to the anode wiring and structure, respectively, and were generally in good condition. This wiring was present in Bays 51, 59, and 71.

Inspection Summary Form

Example for CD 31

	Sur	face Protection Elements	
Element(s)	Rating	Comments	
Surface Protection	4	Overall, surface protection elements were in fair condition. Coal tar epoxy was applied to the fender system and recoating was not evident. Epoxy coating was applied to the bulkhead wall and appeared to be in satisfactory condition above the bulkhead wale beam.	•
Rating (overall)		Although isolated locations indicated coating thickness measurements less than 18 mil, the average thickness for the epoxy coating on the bulkhead wall was approximately 24 mils, indicating a CS1.	
		Where coating was intact on the fender system, coating thickness generally exceeded 18 mils, corresponding with a CS1 rating.	Ratings by Element
 CT Coatings 	4	The original coal tar epoxy exhibited extensive minor peeling and coating failure resulting in exposed bare stoet in the tidal and splash zones at approximately 10 percent of the steel surface area (Figure 9). The perfority of the coating appeared to still be functioning in the atmospheric exposure zone with minor defects primarily at corners and connections.	Group/Type
 EP Coatings 	4	The epoxy coating was generally in good condition above the bulkhead wale beam for the length of the wharf with only minor distress observed at corners and seams (Figure 9).	Provide commentary to
		The epoxy coating applied to the downstream bulkhead wall and wale beam was in much worse condition had generally failed in the tidal and splash zones resulting in ongoing corrosion (Figure 10).	explain reasoning behind rating

PORT HOUSTON

Use Engineering Judgment

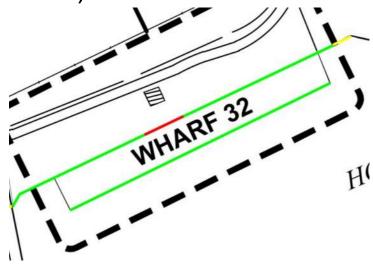
- Many complex factors influence the effect of element conditions on overall component condition
 - Functional and Visual Categories are framework for that influence on overall performance
 - Functional performance is more "black and white"
- It is not possible to develop a single formula to address any and all situations
 - Requires engineering judgement

Consideration Factors

- What information, factors, etc., should be considered in the process of condition assessment for components? (choose all that apply)
 - a) Element conditions
 - b) Intended use and design loads for asset
 - c) Component system(s), purpose of elements
 - d) Damage and deterioration related mechanisms
 - e) Value of the asset or component
 - f) Serviceability requirements / impact / ease of repair/ access

Example: ICCP Component Ratings

- Impressed Current Cathodic Protection (ICCP)
 - ICCP Functional Component Rating
 - ICCP Visual Component Rating

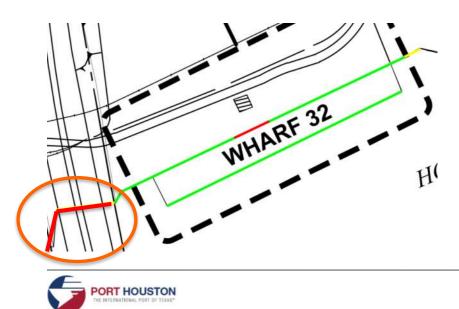


Potential Units	ON Potential	Instant OFF Potential	
mV vs. CSE	-1050	-940	· · · · · · · · · · · · · · · · · · ·
mV vs. CSE	-980	-860	Nearly all Instant OFF
mV vs. CSE	-1210	-970	
mV vs. CSE	-1150	-910	potentials are more
mV vs. CSE	-1260	-1010	negative than -850mV
mV vs. CSE	-1200	-950	
mV vs. CSE	-1180	-970	NACE criteria
mV vs. CSE	-1100	-890	
mV vs. CSE	-1100	-900	
mV vs. CSE	-1110	-920	One area of wall with no
mV vs. CSE	-670	-670	protection
mV vs. CSE	-890	-890	protection
Waterside	-890	-880	
waterside	-1190	-1130	One area with OFF potential
System	-1620	-1500	
•	-1380	-1120	was more negative than
(Bulkhead &	-1290	-1070	-1200mV, potential concern
Fender Piles)	-1070	-900	
	-980	-890	for overprotection

 Waterside System (Bulkhead Wall & Fender Piles)

Rating	Description
6 Good	One of the following criteria is met at all test locations:
	 A negative (cathodic) voltage of -850 mV CSE (millivolt versus copper/copper sulfate reference electrode) or more negative between metal elements and the electrolyte, withou risk of hydrogen embrittlement.
	 A minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay.
	 Test coupons are used to otherwise demonstrate adequate corrosion protection is being applied to the structure.*
	 For reinforced concrete elements, the depolarized potential of the steel in wet saturated concrete is more negative than -720 mV CSE with the anode disconnected for a minimum of 24 hours, or a minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay
5 Satisfactory	One of the above criteria is met at least at 80 percent of the test locations. Damage, electrica malfunctions, or deterioration have affected the functionality of the ICCP or SACP system such that the above criteria are not met at limited locations. Potential for overprotection or coating damage may be noted at some locations, but metals have low risk of embrittlement.
4 Fair	One of the above criteria is met for at least 50 percent of the test locations. The system is partially functional but may not be providing adequate corrosion protection to some base meta elements (or reinforced concrete elements, if applicable). Metals with high risk of stee embrittlement are subject to cathodic overprotection (instant off voltage more negative thar -1,000 mV CSE). Coatings with high risk of disbondment are subject to cathodic overprotection (instant off voltage more negative than -1200 mV CSE).
3 Poor	One of the above criteria are met at less than 50 percent of the test locations. Widespread performance deficiencies are observed for the cathodic protection systems.
2 Serious	One of the above criteria is met at less than 10 percent test locations. Evidence of nonfunctiona cathodic protection system is noted at most locations.
1 Critical	ICCP or SACP system is not functional or is not providing corrosion protection at any tes locations as intended.

*Reference NACE SP0104, Standard Practice: The Use of Coupons for Cathodic Protection Monitoring Applications. If corrosion rate is used as an evaluating metric, the corrosion rate should be no greater than 2 mpy to achieve a rating of 6- Good.


Upstream Bulkhead Wall

- The rectifier installed as part of the upstream ICCP system not functional
- No shift in On/Instant Off (-670mV to -890mV potential readings

Waterside & Upstream Systems

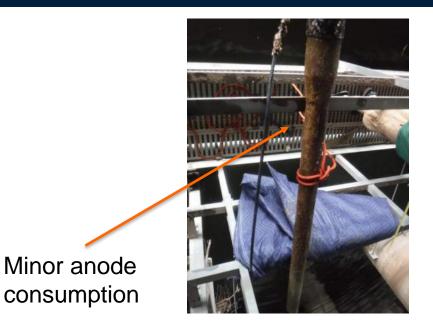
Rating	Description
6 Good	One of the following criteria is met at all test locations:
	 A negative (cathodic) voltage of -850 mV CSE (millivolt versus copper/copper sulfate reference electrode) or more negative between metal elements and the electrolyte, withou risk of hydrogen embrittlement.
	 A minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay.
	 Test coupons are used to otherwise demonstrate adequate corrosion protection is being applied to the structure.*
	 For reinforced concrete elements, the depolarized potential of the steel in wet saturated concrete is more negative than -720 mV CSE with the anode disconnected for a minimum of 24 hours, or a minimum of 100 mV of cathodic polarization, as measured by either polarization formation or decay
5 Satisfactory	One of the above criteria is met at least at 80 percent of the test locations. Damage, electrical malfunctions, or deterioration have affected the functionality of the ICCP or SACP system such that the above criteria are not met at limited locations. Potential for overprotection or coating damage may be noted at some locations, but metals have low risk of embrittlement.
4 Fair	One of the above criteria is met for at least 50 percent of the test locations. The system is partially functional but may not be providing adequate corrosion protection to some base meta elements (or reinforced concrete elements, if applicable). Metals with high risk of stee embrittlement are subject to cathodic overprotection (instant off voltage more negative thar - 1,000 mV CSE). Coatings with high risk of disbondment are subject to cathodic overprotection (instant off voltage more negative than -1200 mV CSE).
3 Poor	One of the above criteria are met at less than 50 percent of the test locations. Widespread performance deficiencies are observed for the cathodic protection systems.
2 Serious	One of the above criteria is met at less than 10 percent test locations. Evidence of nonfunctiona cathodic protection system is noted at most locations.
1 Critical	ICCP or SACP system is not functional or is not providing corrosion protection at any tes locations as intended.
	nponent Types: Impressed Current Cathodic Protection Systems, Sacrificial Anode Cathodic ms, Spray Metalizing with Monitoring Boxes

rate is used as an evaluating metric, the corrosion rate should be no greater than 2 mpy to achieve a rating of 6- Good

The second	1	-		
		0	-	
	- An	an Plan	19	
		/	15	
	/	- Arth		

Typical condition of CS conduit, protecting wiring

Negative structure connection exhibiting moderate corrosion


Typical Anode support in good condition



- Measurements from rectifiers are shown below:
- PW 5-1: 5.9 V DC measured across external leads (display read 5.1 V DC), however, no current was flowing (Figure 2).
- PW 24-1: Output display showed 5.8 V DC and 25A and measured values showed <10% variation.
- PW 37-1: Output display showed 4.0 V DC and 24A, however, measured current was 5.8 V DC. Amperage output display panel was within 10% of measured values.

Some anodes missing

- Extensive defects (not significant)
- Functionality has been impacted

3 – Poor

Rating	Description								
6 Good	Very minor or no problems observed. Also applies to newly constructed or rehabilitated protective components.								
5 Satisfactory Limited minor defects, damage, or deterioration - not extensive to multiple et									
4 Fair Extensive minor or limited moderate defects, damage, or deterioration. All primary and their attachment to the asset are sound and functional purpose/use of the comport affected. Minor repairs or maintenance may be required.									
3 Poor	Extensive moderate defects, damage or deterioration that affects functional purpose/use of the component or compromises attachment of the component to the asset.								
2 Serious	Defects, damage, or deterioration significantly affect functional purpose/use of the component								
1 Critical Advanced damage or deterioration significantly uncertainty and the component to pade the component of the component can no longer serve its functional purpose/use conditions are present that may lead to imminent failure of the ICCP system.									
	nent Types: Anodes, Supplementary Anode Materials, DC Power Supply, Monitorin ng and Protection, Cathodic Protection Jackets, CP Supports								

ICCP Component Rating

- Functional Rating 4
- Visual Rating 3
 - Wiring 5
 - Protection 4
 - Supports 5
 - Anodes 3
 - Power Supplies 3

Element(s)	Rating	Comments
Functional	4	Instant-off potentials of the bulkhead wall were measured as more negative than -850 mV vs. CSE along the length with th
		exception of the upstream bulkhead wall under the I-610 bridge and east end of the downstream bulkhead wall. The
		potential measurement at the bulkhead wall in Bay 16 was
		measured at -1500 mV vs. CSE, which is in excess of the -120
		mV vs. CSE maximum threshold. At the fender, instant-off
		potential measurements were all measured as more negative
		than -850 mV vs. CSE. Figure 1 provides a visual
		representation of the ICCP potential data.
		The entire upstream system appeared non-functional.
Visual (Overall)	3	Refer to ratings below for visual ratings of applicable elemen
		groups.
Wiring and Protection	5	Wiring and protection was in satisfactory condition.
- CU Wiring	5	Accessible portions of wiring appeared to be in satisfactory
		condition with minor corrosion at the connections. Accessibl
		wiring included including negative structure wire extending from the rectifier to the bulkhead wall, positive anode wiring
		from the rectifiers to the submerged anodes, and bond wire:
		installed to electrically connect the fender system to the
		bulkhead wall.
		The most significant corrosion was observed at the negative
		connection in Bay 5 (Figure 3).
- CS Protection	4	Exposed carbon steel conduit extended through the bulkhea
		wall at locations where subgrade wiring was routed. This
		conduit appeared to be in serviceable condition with minor
- PVC Protection	NA	ongoing corrosion (Figure 4). Inaccessible
- CP Supports	5	Supports were in satisfactory condition.
- GS Supports	5	All galvanized steel anode supports were still in serviceable
		condition (Figure 5).
Anodes	3	Minimal marine growth and minor section loss, typical. Some
 OTH Bulk Anode 	3	anodes missing.
DC Power Supply	3	The following observations were made regarding the three
 TRU DC Power 	3	transformer-unit rectifiers installed as part of the waterside
Supply		ICCP system installed for the wharf structure.
		PW 5-1: 5.9 V DC measured across external leads
		(display read 5.1 V DC), however, no current was
		flowing (Figure 2).

- Good adhesion (exceeded 250 psi)
- Varying degrees of peeling/exposed substrate
 - Mostly splash and tidal zones
 - Localized

- Recently recoated
- Good adhesion & thickness
- Limited distress

~30% of area with CS4 peeling/exposed substrate (widespread)

Element(s)	Rating	Comments	
Surface Protection	4	Overall, surface protection elements were in fair condition. The upstream portion of the wall under I-610 had been recently recoated and was in the best condition of the length of the wall.	
			Rati
		The coal tar epoxy coating on the fender system, which appeared to be the original coating, was in poor condition.	6 Good
		All adhesion measurements for coatings applied on the bulkhead wall and fender elements exceeded 250 psi.	5 Satisfac
 CE Coatings 	3	The coal tar epoxy coating was installed on the fender system, including the piles and support framing. This coating was in poor condition on all observed elements, with approximately	
		20 percent of the base metal exposed on the piles and framing, respectively. Coating defects were typically observed in the splash and tidal zones on the fender piles, while the coating	3 Poor
		distress of the framing appeared to generally originate from typical structural details that are difficult to coat (stiffener plates, holes, etc.).	2 Serious
 EP Coatings 	4	The bulkhead wall coatings overall were in fair condition, with varying degrees of peeling and blistering observed along the length of the wall. Higher concentrations of distressed or failed	1 Critical
		coatings was typically observed in the splash and tidal zones.	Applicab
		The original upstream bulkhead wall under the I-610 bridge had been recoated (details unknown) and was in satisfactory condition. Approximately 35 mils DFT was measured in the atmospheric exposure zone and typically, exposed steel was	L

isolated and typically only observed at weld connections to the anode support angles and vertical seams (Figure 6).

Table 6.3. Ratings for Surface Protection Components

Rating	Description
6 Good	Very minor or no problems observed. Also applies to newly constructed or rehabilitated components.
5 Satisfactory	Limited minor defects, damage, or deterioration such as chalking, blushing, blistering, etc not extensive.
4 Fair	Extensive minor or limited moderate defects, damage, or deterioration. Coating, wrap, and/or metalizing may be peeling or missing in localized areas.
3 Poor	Extensive moderate defects, damage or deterioration. Coating, wrap, and/or metalizing may be peeling or missing in not more than 50 percent of coated surfaces.
2 Serious	Defects, damage or deterioration has significantly reduced protection of base steel elements. Coatings, wraps, and/or metalizing elements are only providing protection in localized locations.
1 Critical	Advanced defects, damage, or deterioration categorized as a systematic coating failure. Coatings, wraps, and/or metalizing elements do not protect base metal elements.
Applicable E	ement Types: Coatings, Wraps, and Spray Metalizing

END OF MODULE

Module 6.3 Base Metal Component Ratings

Corrosion Manual Training Course

Module Objectives

Module 6.3 Learning Outcomes

- Summarize rating process for base metal components
- Describe the relationship of element condition states and base metal components
- Employ engineering judgement and determine the Corrosion Damage Index and assign component ratings for base metal components
- Describe use of Corrosion Inspection Summary Form to record component rating information

- Baseline and Routine Inspections
- Numerical Rating: 1 to 6 scale (Corrosion Damage Rating Index)
 - Thickness Measurements (Section Loss)
 - Estimated Corrosion Rate

				Estimated Corro	6 – Good		
			≤ 2	$2 < x \leq 6$	6 < x ≤ 11	>11	5 – Satisfactor
ſ	s	≤2%	6 Good	6 Good	5 Satisfactory	5 Satisfactory	<mark>4 – Fair</mark>
	n Loss	>2% to ≤ 10%	5 Satisfactory	4 Fair	4 Fair	3 Poor	3 – Poor
	Section	>10% to ≤ 30%	3 Poor	3 Poor	3 Poor	2 Serious	2 – Serious
	S	> 30%	2 Serious	2 Serious	1 Critical	1 Critical	1 – Critical

Table 6.4. Corrosion Damage Rating Index for Base Metal Components

- Multiple elements, multiple exposure zones
- Summary rating for the component group
 - Critical
 - Typical
 - Redundant
- Follow-up actions for specific circumstances

- Steel section thickness for base metal element:
 - Section loss based on thickness measurements
 - Location(s) and/or exposure zones with associated section loss
 - Representative conditions across element and element group, multiple
 element groups per component
 - Type of corrosion (uniform, pitting, crevice, MIC,...etc.)
- Corrosion rate estimate by Engineer
 - Meant to be representative of element groups, exposure zones, corrosion type

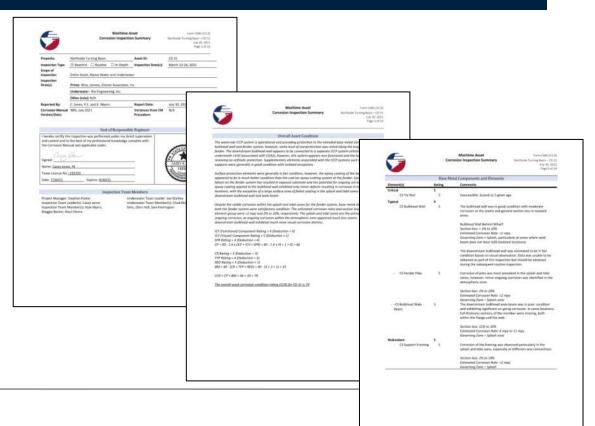
 Section Loss: Percent decrease in thickness relative to the thickness recorded in the design (or Baseline Inspection):

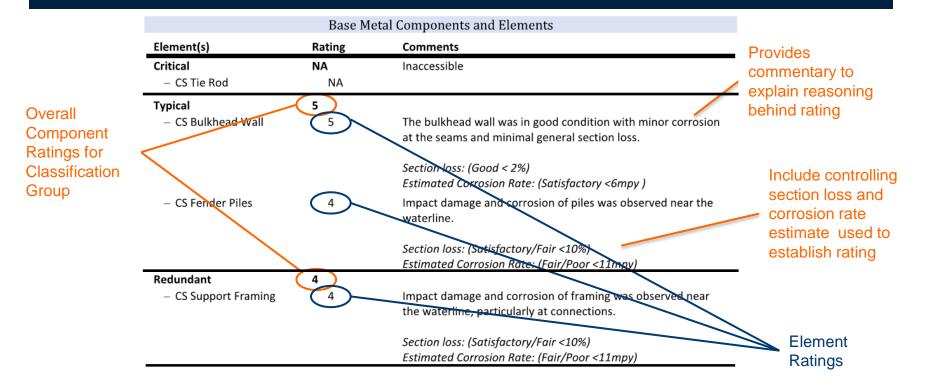
$$SL = \frac{(T_B - T_R)}{T_B} * 100$$

- SL: Section Loss (average for each element group and exposure zone)
- T_B: Initial as-built or design thickness
- T_R: Thickness measured in most recent inspection

• **Corrosion Rate**: from time of the previous inspection:

$$CR = \frac{T_{R-1} - T_R}{I}$$


- CR: Corrosion Rate in mils per year
- T_R: Avg. thickness in current inspection (mils)
- T_{R-1}: Avg. thickness in previous inspection (mils)
- I: Time between previous and current inspection (years)


Documenting and Reporting

- Base metal component ratings included on:
 - Inspection History Form
 - Inspection Summary Form
 - PHA Database

PORT HOUSTON THE INTERNATIONAL PORT OF TEXAS"

Documenting and Reporting

Example: CD32 Base Metal Ratings

Critical

 Tie Rods (Not Accessible)

Typical

- Bulkhead Walls
- Fender Piles

Redundant

Support Framing



Example: CD32 Bulkhead Walls

Example: CD32 Bulkhead Walls

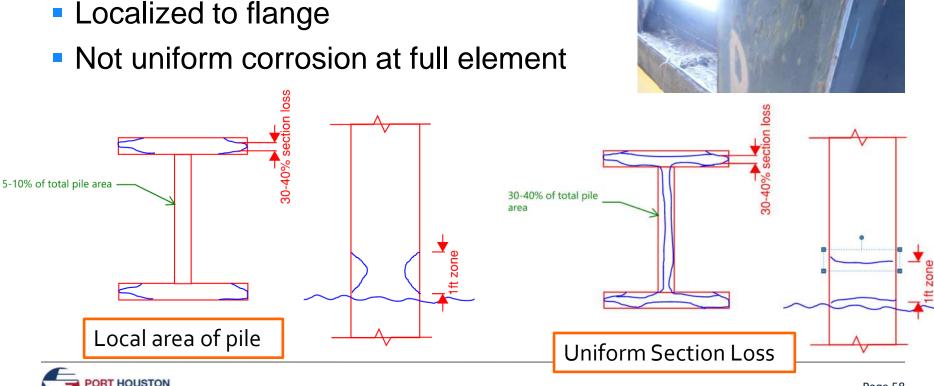
Exposure								Avg.	Section	Condition		BW 1-2	Below wale beam	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
Zone	Element	Location Description		т	hickness (in	.)		Thickness	Loss (%)	State		BW 1-3	Below wale beam	0.38	0.38	0.385	0.38	0.385	0.382	3%	CS2
20.10								(in.)	2000 (79)	otute		BW 4-1	Below wale beam	0.375	0.375	0.375	0.375	0.375	0.375	5%	CS2
		Flange, +6.0,										BW 8-1	Below wale beam	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
		upstream BW under I-610 bridge	0.428	0.437	0.427	0.434	0.432	0.432	0%	CST		BW 12-1	Below wale beam	0.375	0.375	0.37	0.37	0.37	0.372	6%	CS2
		Web, +6.0, upstream										BW 15-1	Below wale beam	0.4	0.4	0.4	0.4	0.4	0.4	0%	CS1
		BW under I-610	0.394	0.401	0.4	0.37	0.399	0.393	0%	CS1	Splash	BW 18-1	Below wale beam	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
		bridge										BW 22-1	Below wale beam	0.395	0.395	0.395	0.395	0.395	0.395	0%	CS1
		Flange, +8.0, diag.										BW 25-1	Below wale beam	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
	BW 1-1	BW between wharf	0.4	0.406	0.399	0.4	0.4	0.401	0%	CS1		BW 31-1	Below wale beam	0.405	0.405	0.405	0.405	0.405	0.405	0%	CS1
		and I-610 bridge										BW 34-1	Below wale beam	0.375	0.375	0.375	0.375	0.38	0.376	5%	CS2
		Web, +8.0, diag. BW between wharf and I-	0.384	0.382	0.377	0.38	0.376	0.38	0%	CS1		BW 37-1	Below wale beam	0.37	0.37	0.37	0.37	0.37	0.37	6%	CS2
		610 bridge	0.364	0.562	0.577	0.56	0.570	0.56	0%	CST		BW 39-1	Below wale beam	0.35	0.35	0.35	0.35	0.355	0.351	11%	CS3
		Flange, +8.0, 40'										BW 1-1	Waterline	0.425	0.425	0.425	0.42	0.42	0.423	0%	CS1
Atmospheric		west of wharf	0.415	0.416	0.412	0.411	0.416	0.414	0%	CS1		BW 1-2	Waterline	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
		Web, +8.0, 40' west	0.395	0.394	0.399	0.393	0.401	0.396	0%	CS1		BW 1-3	Waterline	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
		of wharf										BW 4-1	Waterline	0.375	0.375	0.375	0.375	0.375	0.375	5%	CS2
	BW 5-1	Flange, +10.0	0.405	0.402	0.403	0.406	0.4	0.403	0%	CS1		BW 8-1	Waterline	0.375	0.375	0.375	0.375	0.375	0.375	5%	CS2
		Web, +10.0	0.38	0.379	0.383	0.385	0.391	0.384	0%	CS1	Tidal	BW 12-1	Waterline	0.375	0.375	0.375	0.37	0.37	0.373	6%	CS2
	BW 10-1	Flange, +10.0	0.436	0.415	0.415	0.406	0.416	0.418	0%	CS1		BW 15-1	Waterline	0.4	0.4	0.4	0.4	0.4	0.4	0%	CS1
		Web, +10.0	0.38	0.378	0.372	0.372	0.378	0.376	0%	CS1		BW 18-1	Waterline	0.375	0.375	0.375	0.37	0.37	0.373	6%	CS2
	BW 16-1	Flange, +10.0	0.401	0.402	0.413	0.398	0.402	0.403	0%	CS1		BW 22-1	Waterline	0.395	0.395	0.395	0.395	0.395	0.395	0%	CS1
		Web, +10.0	0.378	0.375	0.377	0.378	0.374	0.376	0%	CS1		BW 25-1	Waterline	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2
	BW 22-1	Flange, +10.0	0.4	0.4	0.398	0.406	0.414	0.404	0%	CS1		BW 31-1	Waterline	0.405	0.405	0.405	0.405	0.41	0.406	0%	CS1
		Web, +10.0	0.384	0.386	0.385	0.39	0.381	0.385	0%	CS1		BW 34-1	Waterline	0.37	0.37	0.37	0.37	0.37	0.37	6%	CS2
	BW 25-1	Flange, +10.0	0.383	0.386	0.4	0.43	0.45	0.41	0%	CS1		BW 37-1	Waterline	0.375	0.375	0.375	0.375	0.375	0.375	5%	CS2
		Web, +10.0	0.371	0.372	0.369	0.373	0.372	0.371	1%	CS1		BW 39-1	Waterline	0.385	0.385	0.385	0.385	0.385	0.385	3%	CS2
												BW 1-1	Mudline	0.43	0.43	0.43	0.425	0.425	0.428	0%	CS1
												BW 1-2	Mudline	0.38	0.385	0.38	0.38	0.385	0.382	3%	CS2
												BW 1-3	Mudline	0.385	0.38	0.385	0.385	0.38	0.383	3%	CS2
												BW 7-1	Mudline	0.365	0.365	0.365	0.365	0.365	0.365	8%	CS2
											Submerged	BW 14-1	Mudline	0.375	0.375	0.38	0.38	0.38	0.378	4%	CS2
												BW 20-1	Mudline	0.375	0.375	0.375	0.38	0.38	0.377	5%	CS2
_	P	ORT HOUSTO	N									BW 26-1	Mudline	0.405	0.405	0.405	0.405	0.405	0.405	0%	CS1
		RE INTERNATIONAL PORT OF TEXAS										BW 32-1	Mudline	0.375	0.375	0.375	0.375	0.38	0.376	5%	CS2
												BW 39-1	Mudline	0.38	0.38	0.38	0.38	0.38	0.38	4%	CS2

Example: CD32 Bulkhead Walls

- Avg. 4% section loss in Splash Zone (controlling zone)
- Installed in 1982 Baseline Inspection 2020
 - 15.8 mils of metal loss in 38 years \rightarrow ~0.5 mpy
- ICCP (Functional 4 Fair, Visual 3 Poor)
- Coating: 4 Fair

5 - Satisfactory

		Estimated Corrosion Rate (mpy)									
		≤ 2	$2 < x \leq 6$	$6 < x \le 11$	>11						
s	≤2%	6 Good	6 Good	5 Satisfactory	5 Satisfactory						
n Loss	>2% to ≤ 10%	$2\% \text{ to} \leq 10\% \qquad 5 \text{ Satisfactory}$		4 Fair	3 Poor						
Section	>10% to ≤ 30%	10% to ≤ 30% 3 Poor		3 Poor	2 Serious						
3 2	> 30%	2 Serious	2 Serious	1 Critical	1 Critical						


Table 6.4. Corrosion Damage Rating Index for Base Metal Components

Exposure Zone	Element	Location Description	Thickness (in.)			n Description Thickness (in.)				-	Avg. Thickness (in.)	Section Loss (%)	Condition State	
	FP 5-1	6 ft	0.6	0.601	0.593	0.598	0.595	0.597	3%	CS2				
A b	FP 16-1	6 ft	0.649	0.645	0.652	0.654	0.648	0.65	0%	CS1				
Atmospheric	FP 25-1	6 ft	0.597	0.597	0.596	0.597	0.587	0.595	3%	CS2				
	FP 33-1	6 ft	0.609	0.609	0.606	0.612	0.606	0.608	1%	CS1				
	FP 5-1	1.5 ft	0.521	0.392	0.375	0.473	0.42	0.436	29%	CS3	40% continuing loss			
Culash	FP 16-1	1.5 ft	0.471	0.325	0.366	0.381	0.491	0.407	34%	CS4	40% section loss			
Splash	FP 25-1	1.5 ft	0.265	0.41	0.248	0.385	-	0.327	47%	CS4	average in			
	FP 33-1	1.5 ft	0.343	0.228	0.366	0.308	0.294	0.308	50%	CS4	average III			
	FP 5-1	W/L	0.615	0.61	0.61	0.615	0.615	0.613	0%	CS1	average in splash zone			
Tidal	FP 16-1	W/L	0.64	0.64	0.64	0.635	0.635	0.638	0%	CS1	spiasi zune			
Tiuai	FP 25-1	W/L	0.48	0.48	0.48	0.48	0.485	0.481	22%	CS3				
	FP 33-1	W/L	0.6	0.6	0.6	0.6	0.6	0.6	2%	CS2				
	FP 1-1	5' below water	0.565	0.565	0.565	0.57	0.57	0.567	8%	CS2				
	FP 7-1	5' below water	0.6	0.6	0.6	0.595	0.6	0.599	3%	CS2				
	FP 14-1	5' below water	0.605	0.605	0.605	0.605	0.61	0.606	1%	CS1				
Submerged	FP 20-1	5' below water	0.615	0.615	0.615	0.615	0.62	0.616	0%	CS1				
	FP 26-1	5' below water	0.565	0.565	0.565	0.565	0.565	0.565	8%	CS2				
	FP 32-1	5' below water	0.57	0.57	0.57	0.57	0.565	0.569	7%	CS2				
	FP 39-1	5' below water	0.58	0.58	0.58	0.585	0.585	0.582	5%	CS2				

PORT HOUSTON THE INTERNATIONAL PORT OF TELAS*

- Avg. ~10% total element section loss in Splash Zone (controls)
- Installed in 1982 Baseline Inspection 2020
 - 246 mils of metal loss in 38 years \rightarrow ~6.5 mpy (equivalent)
- ICCP (Functional 4 Fair, Visual 3 Poor)
- Coating: 3 Poor

Estimated Corrosion Rate (mpv) 2 < x < 66 < x < 11≤2 >11 $\leq 2\%$ 6 Good 6 Good 5 Satisfactory 5 Satisfactory Section Loss >2% to $\leq 10\%$ 5 Satisfactory 4 Fair 4 Fair 3 Poor >10% to $\leq 30\%$ 3 Poor 3 Poor 3 Poor 2 Serious > 30% 2 Serious 2 Serious 1 Critical 1 Critical

Table 6.4. Corrosion Damage Rating Index for Base Metal Components

<mark>4 - Fair</mark>

Example: CD32 Base Metal Ratings

- Ratings and descriptions on Inspection Form
- Measurement data on Inspection Data Form

Base Metal Components and Elements						
Element(s)	Rating	Comments				
Critical	5	Inaccessible. Scored as 5 due to age.				
 CS Bulkhead Tie Rod 	NA					
Typical	4					
 CS Bulkhead Wall 	5	The bulkhead wall was in satisfactory condition with minor				
		corrosion at the seams and minimal general section loss, approximately 5% in the splash zone.				
		Section loss: (Satisfactory, >2% to <10%)				
		Estimated Corrosion Rate: (Satisfactory, <2 mpy) Governing Zone = Splash				
– CS Fender Piles	4	Impact damage and corrosion of piles was observed near the waterline. Corrosion at the flanges was worst in the splash zone				
		with an average loss of approximately 25%. Webs were in generally good condition with minimal section loss.				
		Section loss: (Fair, >2% to <10%)				
		Estimated Corrosion Rate: (Fair, 6 to 11 mpy) Governing Zone = Splash				
Redundant	3					
- CS Support Framing	3	Impact damage and corrosion of framing was observed near the waterline, particularly at connections. Framing in splash zone with approximately 12% section loss in the flanges and corrosion at web.				
		Section loss: (Poor, >10% to 30%)				
		Estimated Corrosion Rate: (Poor, 6 to 11 mpy) Governing Zone = Splash				

Summary

Numerical Rating: 1 to 6 scale (Corrosion Damage Rating Index)

- Thickness Measurements (Section Loss)
- Estimated Corrosion Rate
- Still have to employ Engineering judgement

Table 6.4. Corrosion Damage Rating Index for Base Metal Components

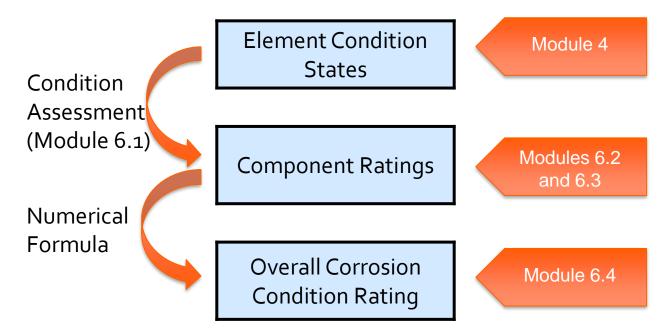
			Estimated Corre	6 – Good		
		≤ 2	$2 < x \leq 6$	6 < x ≤ 11	>11	5 – Satisfactor
Section Loss	≤2%	6 Good	6 Good	5 Satisfactory	5 Satisfactory	<mark>4 – Fair</mark>
	>2% to ≤ 10%	5 Satisfactory	4 Fair	4 Fair	3 Poor	3 – Poor
	>10% to ≤ 30%	3 Poor	3 Poor	3 Poor	2 Serious	2 – Serious
	> 30%	2 Serious	2 Serious	1 Critical	1 Critical	1 – Critical

END OF MODULE

Module 6.4 Asset Corrosion Condition Rating

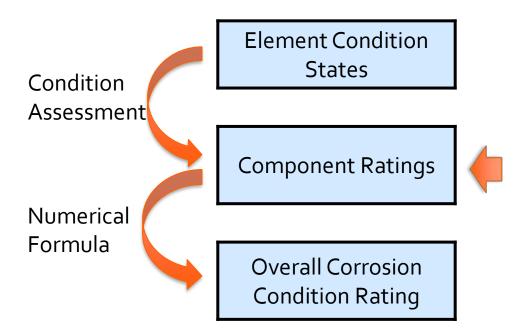
Corrosion Manual Training Course

Module Objectives

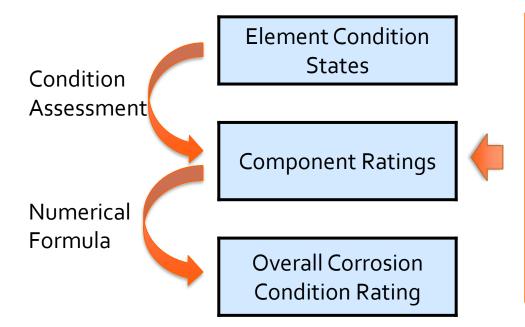

Module 6.4 Learning Outcomes

- Understand the overall rating system of the CM program
- Discuss the relationships between component ratings, component combined rating, and asset corrosion condition rating
- Use component ratings to calculate asset corrosion condition ratings

Overview of Process


CM Outcome

Overview of Process



- Five possible corrosion protection component ratings
 - ICF ICCP Functionality
 - ICV ICCP Visual
 - SAF SACP Functionality
 - SAV SACP Visual
 - SPR Surface Protection Rating
- All five corrosion component ratings may not be applicable to each asset

Overview of Process

CM Outcome

- Three possible base metal component ratings
 - CR Critical
 - TYP Typical
 - RED Redundant
- All three base metal components may not be applicable to each asset

Corrosion Condition Rating (CCR)

- A numeric value between 0 and 100 that reflects the overall condition of the asset with respect to corrosion control
 - $CCR = CP + BM (0 \le CCR \le 100)$
 - CP: Corrosion Protection Component Combined Rating (0 ≤ CP ≤ 60)
 - BM: Base Metal Component Combined Rating $(0 \le BM \le 40)$
 - Calculated based on deductions
 - "Weighted" 60% corrosion protection, 40% base metals

Corrosion Protection Combined Rating

S

- 0 ≤ CP ≤ 60
- Determine deductions based on Table 6.5
- Calculate CP based on numerical equations

	Table 6.5: CP Deduction Table							
			CP I	Deductions by Comp	onent			
	Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protection (SPR)		
Critical	= 1	30	10	30	10	30		
Serious	= 2	15	5	15	5	15		
Poor	= 3	8	3	8	3	8		
Fair	= 4	4	2	4	2	4		
atisfactory	= 5	2	1	2	1	2		
Good	= 6	0	0	0	0	0		

 $CP = 60 - (ICF + ICV + SAF + SAV + SPR) \ge 0$ for assets with each corrosion protection system $CP = 60 - 1.6 \times (ICF + ICV + SPR) \ge 0$ for assets with no sacrificial anode components $CP = 60 - 1.6 \times (SAF + SAV + SPR) \ge 0$ for assets with no impressed current components $CP = 60 - 3.6 \times (SPR) \ge 0$ for assets with only SPR components

Base Metal Combined Rating

- 0 ≤ BM ≤ 40
- Determine deductions based on Table 6.7
- Calculate BM based on numerical equation

		BM Deductions by Component				
	Component Rating	Critical Components	Typical Components	Redundant Components		
		CR	ТҮР	RED		
Critical	= 1	40	25	10		
Serious	= 2	25	13	5		
Poor	= 3	13	6	3		
<mark>Fair</mark>	= 4	6	3	2		
Satisfactory	= 5	3	2	1		
Good	= 6	0	0	0		

 $BM = 40 - (CR + TYP + RED) \ge 0$

Table 6.6: BM Deduction Table

Given: Assessment Complete & Component Ratings

- Corrosion Protection
 - ICCP
 - SACP
 - Surface Protection
- Base Metal
 - Critical
 - Typical
 - Redundant

- 3 Poor
- 2 Serious
- 1 Critical

Step 1: Determine deductions for applicable components

		CP Deductions by Component							
Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protection (SPR)				
= 1	30	10	30	10	30				
= 2	15	5	15	5	15				
= 3	8	3	8	3	8				
= 4	4	2	4	2	4				
= 5	2	1	2	1	2				
= 6	0	0	0	0	0				

Table 6.5: CP Deduction Table

Table 6.6: BM Deduction Table

	BM Deductions by Component					
Component Rating	Critical Components	Typical Components	Redundant Components			
	CR	TYP	RED			
= 1	40	25	10			
= 2	25	13	5			
= 3	13	6	3			
= 4	6	3	2			
= 5	3	2	1			
= 6	0	0	0			

Step 2: Calculate CP & BM

 $CP = 60 - (ICF + ICV + SAF + SAV + SPR) \ge 0$ system

 $CP = 60 - 1.6 x (ICF + ICV + SPR) \ge 0$ components

 $CP = 60 - 1.6 x (SAF + SAV + SPR) \ge 0$ components

 $CP = 60 - 3.6 x (SPR) \ge 0$

for assets with each corrosion protection

for assets with no sacrificial anode

for assets with no impressed current

for assets with only SPR components

 $BM = 40 - (CR + TYP + RED) \ge 0$

No deductions if no CR, TYP, RED component

- Step 3: Calculate CCR
 - CCR = CP + BM ($0 \le CCR \le 100$)
 - CP: Corrosion Protection Component Combined Rating (0 ≤ CP ≤ 60)
 - BM: Base Metal Component Combined Rating $(0 \le BM \le 40)$

 Step 1: Determine deductions for applicable components on the asset

Corrosion Component	Rating	Deduction
ICF	4	
ICV	5	
SAF	N/A	
SAV	N/A	
SPR	3	

Base Metal Component	Rating	Deduction
CR	5	
TYP	4	
RED	4	

 Step 1: Determine deductions for applicable components on the asset

			Table 6.5: CP Deduction Table					
Corrosion	Rating	Deduction			CP	Deductions by Comp	onent	
Component			Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protection (SPR)
ICF	4	4	= 1	30	10	30	10	30
	т	т	= 2	15	5	15	5	15
ICV	5		= 3	8	3	8	3	8
	J		= 4	4	2	4	2	4
SAF	N/A		= 5	2	1	2	1	2
JAI			= 6	0	0	0	0	0
SAV	N/A							
SPR	3							

 Step 1: Determine deductions for applicable components on the asset

			Table 6.5: CP Deduction Table					
Corrosion	Rating	Deduction			CP]	Deductions by Comp	oonent	
Component			Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protection (SPR)
ICF	4	4	= 1	30	10	30	10	30
	т	Т	= 2	15	5	15	5	15
ICV	5	1	= 3	8	3	8	3	8
	J	-	= 4	4	2	4	2	4
SAF	N/A		= 5	2	1	2	1	2
JAI			= 6	0	0	0	0	0
SAV	N/A							
SPR	3							

 Step 1: Determine deductions for applicable components on the asset

				1	able 6.5: Cl	P Deduction Table		
Corrosion	Rating	Deduction			CP]	Deductions by Comp	onent	
Component			Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protectio (SPR)
ICF	4	4	= 1	30	10	30	10	30
	4	4	= 2	15	5	15	5	15
ICV	5	1	= 3	8	3	8	3	8
	5	-	= 4	4	2	4	2	4
SAF	N/A	N/A	= 5	2	1	2	1	2
JAI			= 6	0	0	0	0	0
SAV	N/A	N/A						
SPR	3							

on

Step 1: Determine deductions for applicable components on the asset

			Table 6.5: CP Deduction Table					
Corrosion	Rating	Deduction			CP]	Deductions by Comp	onent	
Component			Component Rating	ICCP Functionality (ICF)	ICCP Visual (ICV)	Sacrificial Anode Functionality (SAF)	Sacrificial Anode Visual (SAV)	Surface Protection (SPR)
ICF	4	4	= 1	30	10	30	10	30
	4	4	= 2	15	5	15	5	15
ICV	5	1	= 3	8	3	8	3	8
	5	-	= 4	4	2	4	2	4
SAF	N/A	N/A	= 5	2	1	2	1	2
371			= 6	0	0	0	0	0
SAV	N/A	N/A						
SPR	3	8						

Step 1: Determine deductions for applicable components on the asset

	BM Deductions by Component				
Component Rating	Critical Components	Typical Components	Redundant Components		
	CR	ТҮР	RED		
= 1	40	25	10		
= 2	25	13	5		
= 3	13	6	3		
= 4	6	3	2		
= 5	3	2	1		
= 6	0	0	0		

Table 6.6. BM Deduction Table

Base Metal Component	Rating	Deduction
CR	5	3
TYP	4	
RED	4	

Step 1: Determine deductions for applicable components on the asset

	BM Dec	BM Deductions by Component					
Component Rating	Critical Components	Typical Components	Redundant Components				
	CR	ТҮР	RED				
= 1	40	25	10				
= 2	25	13	5				
= 3	13	6	3				
= 4	6	3	2				
= 5	3	2	1				
= 6	0	0	0				

Table 6.6. BM Deduction Table

Base Metal Component	Rating	Deduction
CR	5	3
TYP	4	3
RED	4	

Step 1: Determine deductions for applicable components on the asset

	BM Dec	luctions by Cor	nponent
Component Rating	Critical Components	Typical Components	Redundant Components
	CR	ТҮР	RED
= 1	40	25	10
= 2	25	13	5
= 3	13	6	3
= 4	6	3	2
= 5	3	2	1
= 6	0	0	0

Table 6.6. BM Deduction Table

Base Metal Component	Rating	Deduction
CR	5	3
TYP	4	3
RED	4	2

Step 2: Calculate CP

Corrosion Component	Rating	Deduction
ICF	4	4
ICV	5	1
SAF	N/A	N/A
SAV	N/A	N/A
SPR	3	8

$CP = 60 - (ICF + ICV + SAF + SAV + SPR) \ge 0$	for assets with each corrosion protection system
$CP = 60 - 1.6 \times (ICF + ICV + SPR) \ge 0$	for assets with no sacrificial anode components
$CP = 60 - 1.6 \times (SAF + SAV + SPR) \ge 0$	for assets with no impressed current components
$CP = 60 - 3.6 \times (SPR) \ge 0$	for assets with only SPR components

$$CP = 60 - 1.6 \times (ICF + ICV + SPR) \ge 0$$

= 60 - 1.6 \times (4 + 1 + 8)
= 39

Step 3: Calculate BM

Base Metal Component	Rating	Deduction
CR	5	3
TYP	4	3
RED	4	2

$$BM = 40 - (CR + TYP + RED) \ge 0$$

= 40 - (3 + 3 + 2)
= 32

Step 4: Calculate CCR

$$CP = 60 - 1.6 \times (ICF + ICV + SPR) \ge 0$$

= 60 - 1.6 \times (4 + 1 + 8)
= 39

$$BM = 40 - (CR + TYP + RED) \ge 0$$

= 40 - (3 + 3 + 2)
= 32

$$CCR = CP + BM \ge 0$$

= 39 + 32
= 71

What if we had a slight change in component rating(s)?

Corrosion Component	Rating	Deduction	Base Metal Component	Rating	Deduction	
ICF	4	4	CR	5	3	
ICV	5 4	1 2	TYP	4 3	3 -6	
SAF	N/A	N/A	RED	4	2	
SAV	N/A	N/A				
SPR	3	8	$CCR = CP + BM \ge 0$ = 39 -38 + 32 -29			

= 71 67

Documentation and Reporting

Documented on the following forms:

- Inspection History
- Inspection Summary
- PHA Database

5			aritime Asset ection History	Form CMIH (V1.0) Barbours Cat Terminal – BCT 5 Last updetest January 27, 2020 Page 2 of 1	
Property:	Barbours Cut Ter	minal	Asset ID:	BCT 5	
Asset Classification: Wharf			Year of Original Construction:	1990	
Inspection Frequency:	Ref. Inspection P		Year(s) of Significant Modifications or Repairs:	2002, 2004, 2008, 2011	
	Dates of	Inspections,	Asset, and Component R	atings	
Date:		1/24/2020			
Inspection Type	ii (.	Baseline			
Inspection Statu	16	Completed			
Inspection Firm	Above Water	WJE			
Inspection Firm	Underwater	Rio			
Corresion Condi	tion Rating (CCR)	70			
Corresion Prote	ction (CP)	38			
ICCP Function	ality	4			
ICCP Visual		4			
SA Functional	ity	NA			
SA Viscal		NA			
Surface Prote	ction	3	1		
Base Metal (BM	1	32			
Critical		5			
Typical		4	12		
Redundant		4			

Inspection History

Documentation and Reporting

			Maritime A on Inspectic	sset In Summary	Form CMIS (V1.0) Northeide Terring Basin – CD 32 May 15, 2020 Fage 1 of 11		
Property:	Northside Turnit	ng Basin		Asset ID:	CD 32		
Inspection Type Scope of Inspection	St Baseline		🗆 In-Depth	Inspection Date(s):	May 20, 2020 (abovewater) August 7, 2020 (underwater)	25	
Inspection Firm(s):	Prime: Wiss, Jan	2002	ar 10 a	2			
	Underwater: R	a Engineerin	ng, inc.				
	Other (role): N/	A					
Reported By:	S. Foster, P.E.			Report Date:	May 11, 2021		
Corrosion Manua Version/Date:	F 95%, June 2020	10		Variances from CM Procedure:	N/A		
		Seal of	Remonsibl	e Engineer			
	Expin	es:9/30/21		-	Man ONAL ENGINE		
	Stephen Foster Leader(s): Stepher Member(s): Casey	Faster	Un	Members derwater Team Leader derwater Team Memb			
Project Manager: Inspection Team Inspection Team	Leader(s): Stepher	Faster	Un Un	derwater Team Leader	: los Starkey et(s):	tion	Sur
Project Manager: Inspection Team Inspection Team	Leader(s): Stepher	Faster	Un Un	derwater Team Leader	Joe Starkey	tion	Sur

ORT HOUSTON

RE INTERNATIONAL PORT OF TEXAS"

Overall, the bulkhead wall was in good condition with minimal measured section loss when compared to design thicknesses. On the other hand, the measured section loss and estimated corrosion rates for the fender elements led to lower ratings. For fender pile elements, moderate section loss was measured in the splash zone along with an approximate corrosion rate of between 6 and 11 mpy, resulting in a poor rating. Corrosion was observed in **Overall Asset Con** the support framing with a similar rating. Overall, the bulkhead wall was in good condition with minimal thicknesses. On the other hand, the measured section loss and e led to lower ratings. For fender pile elements, moderate section The corrosion protection system of the wharf appeared to be mostly functional. The rectifier in Bay 5 was not an approximate corrosion rate of between 6 and 11 mpy, result the support framing with a similar rating. outputting current, likely due to discontinuity in the external leads. Despite this, potentials showed adequate The corrosion protection system of the whorf appeared to be a protection for the entire fender and approximately 80 percent of the length of the bulkhead wall. 300mV of outputting current, likely due to discontinuity in the external lea protection for the entire fender and approximately 80 percent of overprotection was measured at Bay 16, possible correlating to the coating distress located in this area. overprotection was measured at Bay 16, possible correlating to Submerged anodes were evaluated as part of the underwater as Submerged anodes were evaluated as part of the underwater assessment, and overall were in fair condition with minor pitting with some of the gnodes having moderate section minor pitting with some of the anodes having moderate section loss at the ends. This wharf contained two different kinds of anodes, one type of anode is encased within a length than the original anodes. These more recently installed en different kinds of anodes, one type of anode is encased within a PVC casing that weighs less and are shorter in splicing of wining. The original anodes are longer and heavier an anode includes both the anode and the casing for those which i length than the original anodes. These more recently installed encased anodes can be visually noted by the and supports appeared intact and functioning splicing of wiring. The original anodes are longer and heavier and are not encased. Note that the weight of the The second (CCP system installed on the upstream bulkhead wa the rectifier was non-functional and therefore, measurements anode includes both the anode and the casing for those which included a PVC casing. The wiring of all anodes ICF (Functional) Component Rating = 4 (Deduction = 4) and supports appeared intact and functioning. ICV (Visual) Component Rating = 3 (Deduction = 3) SPR Rating = 4 (Deduction = 4) CP = 60 - 1.6 x (ICF + ICV + COA) = 50 - 1.6 x /4 + 3 + 41 = 42 The second ICCP system installed on the upstream bulkhead wall under I-610 was non-functional. At a minimum. CR Rating = 5 (Deduction = 3) the rectifier was non-functional and therefore, measurements could not be obtained with the system turned on. TYP Rating = 4 (Deduction = 3) RED Rating = 3 (Deduction = 3) RM = 40 - (CR + TYP + RED) = 40 - (3 +3 + 3) = 31 ICF (Functional) Component Rating = 4 (Deduction = 4) CCR = CP + RM = 42 + 31 = 73ICV (Visual) Component Rating = 3 (Deduction = 3) The overall asset corrosion condition rating (CCR) for CD 32 is . SPR Rating = 4 (Deduction = 4) $CP = 60 - 1.6 \times (ICF + ICV + COA) = 60 - 1.6 \times (4 + 3 + 4) = 42$ CR Rating = 5 (Deduction = 3) TYP Rating = 4 (Deduction = 3) RED Rating = 3 (Deduction = 3) BM = 40 - (CR + TYP + RED) = 40 - (3 + 3 + 3) = 31nmarv CCR = CP + BM = 42 + 31 = 73The overall asset corrosion condition rating (CCR) for CD 32 is 73.

Documentation and Reporting

- In addition to the CCR, Inspection Summary forms are to include:
 - Brief discussion of the ratings for all corrosion and base metal components of the asset
 - Discussion of the implications of the reported component ratings on the overall corrosion condition rating and recommended actions
 - Discussion of recommended follow-up actions.

Module Wrap-Up

- Summarize Corrosion Manual approach to condition assessment of components and assets
- Assign component ratings for ICCP, SACP, Surface Protection and Base Metal components
- Use component ratings to determine the overall asset corrosion condition rating (CCR)
- Use of Corrosion Manual Inspection Summary Form and Inspection History Form to record condition assessment information

END OF MODULE

Module 7.1

Recommended Follow-up Actions

Corrosion Manual Training Course

Module Objectives

Module 7.1 Learning Outcomes

- Describe the categories of recommended follow-up actions
- Formulate follow-up action recommendations
- Distinguish between immediate, priority, and routine followup actions
- Document follow-up actions using appropriate forms

Module References

- Chapter 7: Recommended Follow-Up Action Guidelines
- Appendix F: Documentation and Reporting Forms
 - Follow-Up Action Form

Recommended Follow-Up Actions

- Follow-Up Actions helps guide what should happen next for each asset
 - Assists PHA with planning and management decisions

Possible options

- No Action Required
- Routine Follow-Up Action
- Priority Follow-Up Action
- In-Depth Inspection

- Refined Analysis
- Immediate Actions (emergency)
- Inspection Plan Modifications

Follow-Up Actions

- Conditions requiring maintenance
- Conditions requiring minor repairs
- Conditions requiring replacement of one or more nonstructural element
- Elements where a condition state of CS4 (Severe) was assigned during the inspection
- CP systems for which functionality has been affected

Priority vs. Routine Actions

- Priority The action to address the observed condition should take precedence over other actions (e.g. routine actions), but the condition needing repair does not appear to immediately compromise the structural integrity
 - May affect functionality
 - May be necessary to prevent further damage, deterioration, or defects from reaching the point at which future repairs become significantly more costly

Priority vs. Routine Actions

- <u>Routine</u> The action can be addressed as part of a routine maintenance program
 - Scheduled in the future without compromising the structural integrity or functionality of the asset
 - Waiting does not significantly increase the future costs of the maintenance or repair

Immediate Actions

- Immediate Required when an inspection identifies severe conditions that have occurred, or appear likely to occur, that have the potential for property or environmental damage, or that may affect structural integrity or facility operations
 - Notify Port Houston immediately by phone and in writing with documentation within 24 hours
 - Provide justification for the immediate action

In-Depth Inspection

- In-Depth Inspection May be recommended as a followup action to a in order to obtain the information required:
 - For the preparation of repair design and construction documents
 - Where atypical conditions have been identified that require more information to access
 - When functionality of corrosion protection systems have been compromised for reasons unable to be identified during the Routine Inspection

Recommended Follow-Up Actions

- Every Baseline and Routine Inspection requires completion of the "Follow-Up Actions Form"
 - If no conditions require action, recommendation is "No action required"
 - If needed, engineer should recommend timing for next Inspection:
 - Based on standard interval (Table 2.1)
 - Increased or reduced interval* (*Final selection by Port Houston)

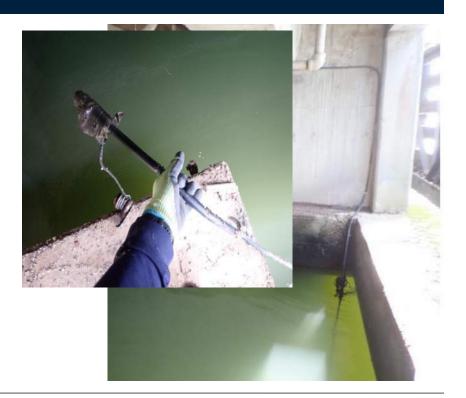
Examples

- Component: Surface Protection
- **Elements:** Coatings (CT-CE)
- Follow-up Action: Recoating warranted
- Priority? Routine

- Corrosion Component: ICCP
- Element: TRU DC Power Supply (PW-TRU)
- Follow-up Action: Perform follow-up investigation to determine cause(s) and repair or replace system
- Priority? Priority

- Corrosion Component: ICCP
- **Element:** TRU DC Power Supply (PW-TRU)
- Follow-up Action: Restore and/or replace support to electrical breaker panel support leg to a secure position
- **Priority?** Priority

- Corrosion Component: ICCP
- Element: Wiring (WI-CU)
- Follow-up Action: Restore and/or replace bond wire connections between each fender pile and support framing.
- Priority? Routine



- Component: Surface Protection
- **Elements:** Coatings (CT-EP)
- Follow-up Action: Recoating of the bulkhead wall should be considered
- Priority? Routine

- Corrosion Component: ICCP
- Element: Wiring (WI-CU) & Supports (SI-GS)
- Follow-up Action: Replace anode supports in Bays 56 and 59 and anodes in Bay 56. Ensure anodes are submerged at design elevations.
- **Priority?** Routine

Follow-Up Action Form

- Summary of Recommended Follow-Up Actions
- Asset Identification
- Inspection
 Information
- Follow-Up Action(s) & Log

Property:	Barbours Cut	Terminal	Asset ID:	BCT 5
				April 21-22, 2020 (abovewater)
inspection Type:		Reatine C Spe		August 4-5, 2030 (underwater)
Scope of Inspection		Above Water and		-
Inspection Firm(s):			ilocketes, Inc. (WJE)	
	Other (role)	flio Engineering, h	te.	
Reported By:	C. Jones, Will	1907.	Report Date:	October 6, 2020
seporate sy-	s. inset, with		neport core:	Detabler 6, 2010
		Follow-u	p Actions	
item No.:	1	Priority:	SPriority 🗍 Ros	tine
Component:		ent Cathodic Prob	ection System	
Element Type:	DC Power Supply	Element ID(s):	PW 5-1	
Condition Identified:		attind off when the is turned off is unit		t. The time duration for which
Reason for action:	ICCP system ca	ent function with	rectifiers turned off.	
Recommended Action:			eed on and functioning.	nairtiun of the majection.

* Documented for the purposes of showing when rectilier was turned on

		Priority:	CPriority Science
Component:	Protective Couting	3	Ý
Element Type:	Builthead wall conting	Element ID(s):	$\begin{array}{c} C_{1}^{*}2=4,2=4,3=4,4=4,5=4,4=4,7=4,8=4,7=4,18=4,19=4,11=4,12=4,18=4,12=4,18=4,12=4,18=4,12=4,28=4,22=4,22=4,22=4,22=4,22=4,22=4,2$
Condition Identified:	Failure of coating and a	nderlying car	resion on buikhead sheet pile well.
	Corrosion will continue connections at whale b		nd lead to additional section loss. Members and one non-functional.
Recommended Action:	Clean and cost trollback	d well.	
and the	and and		

Figure 2. Protective coating failing leading to SON comumption of bulk aread

Recommended Follow-Up Actions

Important Points:

- More than one recommended action may arise from the condition assessment of a given asset
- All actions should be prioritized in a consistent manner
- A brief justification (written explanation) should be provided for any recommended actions
- Documented on Follow-Up Actions Form

- Follow-Up Actions Form
 - List all follow-up actions for given asset
 - Complete follow-up actions log for PHA use

Property: Inspection Type:	Property Baseline	Routine Spe	cial	Asset ID: Inspection Date:	Asset ID MMMM DD, YYYY	Iter
Scope of Inspection	[Entire Asso	et] / [Limited; Bays #	III to ##]		2	- No
Inspection Firm(s):	Prime: (Firm	n Name]				5
	Underwate	r: (Firm Name)				
	Other (role): (Firm Name)				
Reported By:	[L Inspecto	r]		Report Date:	MMMM DD, YYYY	_
		Follow-u	p Actio	ins		-
Item No.:	5	Priority:	□Pri	ority 🗌 Routi	ne	
Component:						
Element Type:		Element ID(s):				
Condition Identified:						
Reason for action:						
Recommended Action:]
Re	pres	enta	tiv	e Pho	otos	

Maritime Asset Follow-up Actions Form MSFA (V1.1) Property - Asset ID MMMM DD, YYYY Page 2 of 8

ltem	Priority	Action	Assigned To	Assigned By	Date
No.	FIIOTILY	Action	Assigned to	Assigned by	Date
1	Priority	Schedule follow-up investigation	P. Manager	D. Engineer	MM-DD-YYYY

Appendix F

Example: No Action Required

				4.24457
Item No.:	1	Priority:		
Component:	n/a			
Element Type:	n/a	Element ID(s):	n/a	
Condition Identified:	No action red	quired		
Reason for action:	Asset conditi	on does not warrant fu	ther action at thi	s time.
Recommended Action:	Schedule nex	t Routine Inspection at	standard interval	(3 yrs above water, 6 yrs below water)
	N/A			N/A
Figure	1. Overall view	of location	Figure	2. Close-up view of condition

Using Follow-Up Action Form (See Section 8.9)

	1	Priority:	□Priority ⊠Routine
Component:	Impressed Cu	rrent Cathodic Prote	ection System
Element Type:	DC Power Supply	Element ID(s):	PW 5-1
Condition Identified:	Panel ammet		nels : CS4 (Severe) of current, voltage drop was measured across shunt and I, verifies broken panel meter and overall CP system is
Reason for action:	To easily obse	erve amount of curre	ent provided by rectifier
Recommended Action:	panel as brok	en. Ensures workers	e: Replace meter or mark meter and record ammeter s ignore panel reading and record current measurement erforming properly.
		C	
		NEGATI	IVE

Required information

Priority

Item No.:	1	Priority:	Priority	⊠Routine
Component:	Impressed Cu	rrent Cathodic Prote	ection System	
Element Type:	DC Power Supply	Element ID(s):	PW 5-1	
Condition Identified:	Panel ammete		f current, voltag	e) e drop was measured across shunt and panel meter and overall CP system is
Reason for action:	To easily obse	rve amount of curre	ent provided by	rectifier
Recommended Action:	panel as broke	사장님 글 것으로 걸렸다. 직망하는 것이 많이 없다.	ignore panel re	r or mark meter and record ammeter ading and record current measurement rly.
		G		
		NEGATI	VE	

- Priority
- Component
- Element Type and ID(s)

	1	Priority:	Priority	⊠Routine
Component:	Impressed Cu	rrent Cathodic Prote	ection System	
Element Type:	DC Power Supply	Element ID(s):	PW 5-1	
Condition Identified:	Panel ammete		f current, voltag	 e) e drop was measured across shunt and panel meter and overall CP system is
Reason for action:	To easily obse	rve amount of curre	ent provided by	rectifier
Recommended Action:	panel as brok	사용은 물건 도망 없다. 도망한 사람이 많이 했다.	ignore panel re	or mark meter and record ammeter ading and record current measuremen rly.
				A DECEMBER OF THE OWNER OF
		NEGATI	VE	

- Priority
- Component
- Element Type and ID(s)
- Condition Identified
- Reason for Action
- Recommended Action(s)

Item No.:	1	Priority:	□Priority ⊠Routine
Component:	Impressed Cu	rrent Cathodic Prote	ection System
Element Type:	DC Power Supply	Element ID(s):	PW 5-1
Condition Identified:	Panel ammete		nels : CS4 (Severe) f current, voltage drop was measured across shunt and , verifies broken panel meter and overall CP system is
Reason for action:	To easily obse	rve amount of curre	ent provided by rectifier
Recommended Action:	panel as broke	en. Ensures workers	E: Replace meter or mark meter and record ammeter ignore panel reading and record current measuremen erforming properly.
		NEGATI	VE
		the second of	
			lisplaying 0 amps of current

- Priority
- Component
- Element Type and ID(s)
- Condition Identified
- Reason for Action
- Recommended Action(s)
- Photograph(s)

Item No.:	1	Priority:	□Priority ⊠Routine
Component:	Impressed Cu	rrent Cathodic Prote	ection System
Element Type:	DC Power Supply	Element ID(s):	PW 5-1
Condition Identified:	Panel ammet		els : CS4 (Severe) f current, voltage drop was measured across shunt and , verifies broken panel meter and overall CP system is
Reason for action:	To easily obse	erve amount of curre	ent provided by rectifier
Recommended Action:	panel as brok	en. Ensures workers	e: Replace meter or mark meter and record ammeter ignore panel reading and record current measurement
	across share t	o verny system is p	erforming properly.
		NEGATI	
		NEGATI	

Example Follow-Up Actions

Item No.:	2	Priority:	Priority	□Routine
Component:	Impressed Current	Cathodic Protection	System	
Element Type:	DC Power Supply	Element ID(s):	PW24-1	
Condition Identified:	current values the	resistance value was e connection or resis	recorded to be .01	r obtaining voltage drops and ohm. ed due to excessive voltage
Reason for action:	Damaged shunt in setting of rectifier.		rrent measuremen	ts and can lead to improper
Recommended Action:	Replace shunt.			
		NOGEL NOGEL D.C. VOLTS A.C. VOLTS A.C. AUPS	AND TEMP	

Item No.:	5	Priority:	⊠ Priority	Routine
Component:	Protective Coating			
Element Type:	Bulkhead wall coating	Element ID(s):	4, 11-4, 12-4, 4, 19-4, 20-4, 4, 27-4, 28-4, 4, 35-4, 36-4,	4, 4-4, 5-4, 6-4, 7-4, 8-4, 9-4, 1(13-4, 14-4, 15-4, 16-4, 17-4, 18 21-4, 22-4, 23-4, 24-4, 25-4, 26 29-4, 30-4, 31-4, 32-4, 33-4, 34 7-4, 38-4, 39-4, 40-4, 41-4, 42 45-4, 46-4, 47-4, 48-4
Condition Identified:	Failure of coating and u	inderlying cor	rosion on bulkhei	ad sheet pile wall.
Reason for action:	Corrosion will continue connections at whale b			nal section loss. Members and aal.
Recommended Action:	Clean and coat bulkhea	d wall.		
			Kaller -	

END OF MODULE

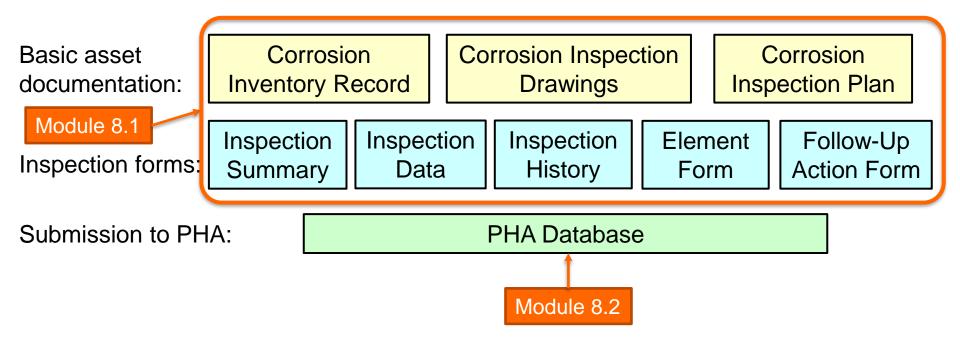
Module 8.1

Overall Documentation and Reporting Requirements

Corrosion Manual Training Course

Module Objectives

- Describe overall documentation and reporting requirements for each type of inspection
- Describe the purpose of each type of documentation required by the Corrosion Manual



Module Resources

- Chapter 8: Documentation and Reporting
- Appendix F: Documentation and Reporting Forms
- Module 3.2 of Training Course

Documentation Overview

Corrosion Inventory Record

Record of as-built condition of asset.

Includes: Asset Identification Asset Type Original Date of Construction Date(s) of Rehabilitation or Modification Geometric Data Corrosion Protection History Asset History Reference Drawing List Components and Elements Figures Revision History

5	Corre	Maritime Asset osion Inventory Record	Form CMIR (V1.0) Barbouts Cut Terminal – BCT 5 Last update: January 24, 2020 Page 1 of 8		
Property:	Barbours Cut Terminal	Asset ID:	BCT 5		
Asset Type:	Wharf	Year of Original Construction:	1990		
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011 January 24, 2020		
Wharf Usage:	Containerized Cargo	Date of Last Inventory Record Update:			
	As	sset Geometric Data			
Area:	36 acres	Deck Elevation above MLT:	18 ft. 0 in.		
Structure Length:	1000 ft.	Channel Depth at Fender:	44 ft. 6 in.		
Structure Width:	Deck: 108 ft. 9 in.	Channel Depth at Bulkhead:	and the second se		

Recommended Access: Pedestrian access to structure top side and landside bulkhead via catwalks; boat access required to channel-side of bulkhead wall (8-foot design clear span between drilled shafts).

Structure Corrosion Protection History

BCT 5 is located near the west end of the Barbour's Cut Terminal along the south side of the channel. The original structural drawings are dated 1989, and wharf construction was completed in 1992. Several noteworthy repairs and modifications performed at various times during the service life of the wharf include the following:

- 2002: Repair and localized recoating of fender system.
- 2004: Repair and localized recoating of fender system.
- 2004: Repair of the crane rail expansion joint.
- 2008: Repair and localized recoating of fender system.
- 2011: Repair and localized recoating of fender system

Generated as part of Baseline Inspection. Revised as part of Routine Inspection only if changes are identified.

Barbour's Cut - Phase II

Corrosion Inventory Record

Form CMIR (V1.0)

Barbours Cut Terminal - BCT 5 Last update: January 24, 2020 Page 4 of 8

Maritime Asset **Corrosion Inventory Record**

	Impressed Current Corrosion Protection Elements
Component / Element(s)	Description
Anodes	Anodes are installed as part of the ICCP system designed to protect both the fender piles and bulkhead wall.
- OTH Anode	Clusters of two bulk anodes are hung from the deck at approximately 35' to the landside of the fender system at 10' longitudinal spacing, totaling 200 anodes. Anodes are installed at Elev3.0 and -12.0'.
DC Power Supply	Three DC power supplies are installed to provide DC power for the ICCP system. Note: drawings indicate five rectifiers, but only three were installed.
 TRU DC Power Supply 	Transformer-unit rectifiers are installed approximately 116-feet to the landside of the bulkhead wall adjacent to light poles 8 through 12.
Wiring and Protection	Wiring connects TRU DC Power Supplies with bulk anodes and the structure and is protected by PVC conduit to the landside of the bulkhead wall.
- CU Wiring	No. 6/7 copper wiring connects the corrosion protection system. Positive leads run to the buik anodes and negative leads are connected to the fender system and buikhead wall. Negative leads connect the copper conduit to the top fender wale beam and buikhead wall in three and six locations, respectively.
- PVC Protection	Copper wiring is run through underground PVC conduit from the bulkhead wall to the five transformer-unit rectifiers.
	Base Metal Components and Elements
iomponent / lement(s)	Description
ritical	
- CS Tie Rod	Tie rods, 3-3/4 inch diameter, extending from buikhead wale beam to dead man spaced at approximately 15 feet on center and encased in Schedule 40 PVI Casings.
	 Installed in 1990, no documented modifications or repairs. Design Cross-Sectional Area = 11.0 in²

Typical

- CS Bulkhead Wall

BZ-20 steel sheet piles extending from Elev. +14.65 to -58.00'. Mudline is shown at -5.00'.

- Installed in 1990, no documented modifications or repairs. BZ-20
- Design Thickness = 0.551 in (flange), 0.394 in (web/wall)

- List of components and elements
 - Corrosion Protection

- ICCP

- SACP

- Surface Protection
- Base Metals
 - Critical, Typical, Redundant
 - Includes design thickness

 Original construction drawings may be too complicated or cluttered to use as inspection drawings

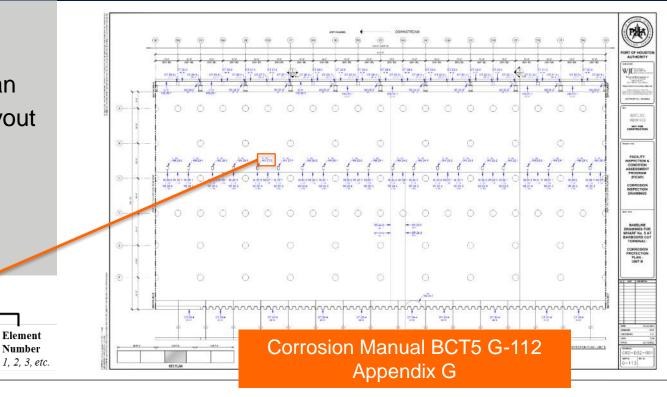
Record of as-built condition of asset.

Includes: Layout of the structure Naming of bays Types and locations of elements within the scope of the corrosion manual

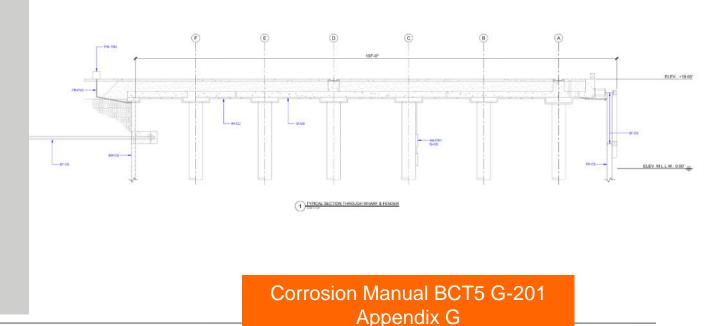
Generated as part of Baseline Inspection. Revised as part of Routine Inspection only if changes are identified.

Sheet Number	Sheet Description	Information Included
G-001	Title	Asset name PHA drawing number Date of drawing set Vicinity map Asset location map
G-002	Project Information	Sheet Index Key Plan, referencing asset plan sheets (i.e. G-1XX). The Key Plan should have notes/labels consistent with structure history on Corrosion Inventory Record form (i.e., indicate significant modifications, repairs, expansions, partial demolitions). List of Referenced Historical Drawings Definitions of Symbols Definitions of Abbreviations
G-10(x)	Bay Plan(s)	Plan view of topside of structure. Asset may be broken into multiple pages. Bays outlined and denoted per Corrosion Manual scheme (see Section 8.4.1). Grid lines, based on historic drawings if possible. Overall dimensions of bays. North Arrow Channel Designation
G-11(x)	Corrosion Protection Element Plan(s)	Corrosion Protection elements individually outlined and labeled.* Drawn as plan views. Applicable views may include the superstructure and deck elements cut at the structure topside and/or the substructure and fender elements cut below the deck level. Sheets to be ordered from Upper Plan to Lower Plan.
G-12(x)	Base Metal Element Plan(s)	Base Metal elements individually labeled.* Drawn as plan views. Applicable views may include the superstructure and deck elements cut at the structure topside and/or the substructure and fender elements cut below the deck level. Sheets to be ordered from Upper Plan to Lower Plan.
G-20(x)	Typical Sections	Cross-sections through representative portions of wharf. Include a separate cross-section for significant changes in structure configuration (e.g., change in pile type, arrangement of beams, width of structure, etc.). Provide elevations for Top of Deck; Mean Low Tide. Label typical elements with name and element code (e.g., Polyurethane Coating (CT-PU)).
G-30(x)	Typical Elevations	Elevation view of typical bay(s), as viewed from the channel. Include major corrosion protection and base metal Elements. Label typical elements with name and element code (e.g., Polyurethane Coating (CT-PU)).

- Corrosion Protection Plan
- Schematic layout of corrosion elements
- Element IDs labelled


Element

Number


Element Code **Bay Number** DT, PI, WL, etc. 1, 2A, 2B, etc.

ORT HOUSTON

FANATIONAL PORT OF TEXA

- Typical Sections
- Cross-sectional layout of corrosion and base metal elements

Corrosion Inspection Plan

- Define inspection procedures
 - Applicable standards
 - Specific test locations
 - Based on element and exposure zone

5		Maritime Asset rosion Inspection Plan	Form CMIP (VI.0 Rarbours Cut Terminal – BCT 5 Last update: October 11, 2021 Page 1 of 2		
Property:	Barbours Cut Terminal	Asset ID:	BCT 5		
Asset Type:	Wharf	Year of Original Construction:	1990		
Wharf Type:	Open	Year(s) of Significant Modifications or Repairs ¹ :	2002, 2004, 2008, 2011		
Wharf Usage: Containerized Cargo		Date of Most Recent Inspection:	April 2020 (above-water) August 2020 (below-water)		

Functionality Checks (Inspection Frequency = 6 months)

Measure and record electrical measurements from (3) Transformer-Unit Rectifiers, which includes current
output, voltage output, and functionality

Functionality Checks (Inspection Frequency = 1 year)

- Visual inspection of the nine weld connections between the negative leads and structure (3 to the fender wale beams and 6 to the bulkhead wall)
 - Terminal ring leads for structure and negative leads have good crimp connections
 Inspect for loose or broken wires of structure and negative connections
 - Remove corrosion product from electrical connections if necessary to provide electrical continuity
- Measure and record on/off structure-to-electrolyte potentials to determine polarization decay of base metal elements in general accordance with Test Method 3 of NACE TMO497 to determine if CP is adequate to criterion in NACE SP0169.
 - At a minimum, testing should be performed at the same five locations during the Baseline Inspection;
 - Bays 5, 24, and 47 (near locations of negative structure connections)
 - Bays 14 and 33 (approximately midway between negative structure connections)

Tier 1 Tasks (Inspection Frequency = 3 years)

- · Visual assessment of all accessible corrosion protection and bare metal elements
- Perform non-destructive measurements for elements as specified below. Measurement locations are
 recorded on Corrosion Element Inspection Forms. Readings should be obtained from same locations as
 those during the Baseline Inspection for comparable results.
 - UT Measurements: Prepare Uncoated Surfaces per SSPC- SP 3, SP 11, or as required per device manufacturer
 - Coating Thickness Measurements: Prepare Surfaces per SSPC-SP 1

Element Exposure Zone Required Inspections¹

CS Tie Rod	Soil	Visually observe encasement concrete. Cracking may be indicative of
		corrosion distress of tie rod.
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
CS Bulkhead		Coating Thickness and/or Adhesion Measurements: 8 locations
Wall	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
was		Coating Thickness and/or Adhesion Measurements: 12 locations
	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)

Element	Exposure Zone	Required Inspections ¹
		Coating Thickness Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations
	Splash	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
CS Fender		Coating Thickness and/or Adhesion Measurements: 12 locations
Piles	Tidal	Ultrasonic Thickness Measurements: 12 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 12 locations
	Submerged	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
	(Tier 2)	Coating Thickness and/or Adhesion Measurements: 5 locations
	Atmospheric	Ultrasonic Thickness Measurements: 5 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 5 locations
CS Support	Splash	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
Framing		Coating Thickness Measurements: 8 locations
	Tidal	Ultrasonic Thickness Measurements: 8 locations (each at flange and web)
		Coating Thickness and/or Adhesion Measurements: 8 locations

¹Test locations shall be representative of the condition of the given element within the entrie bay. Unless specific conditions were noted during the visual survey or FICAP inspection that warrant acquiring data for specific bays, bays where data is to be acquired are listed below:

- 5 Locations: Bays 5, 14, 24, 33, and 43
- 8 Locations: Bays 3, 9, 15, 22, 29, 35, 41, and 47
- 12 Locations: Bays 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46

Tier 2 Tasks (Inspection Frequency = 6 years)

- Level I underwater diving inspection of anodes as defined in ASCE 101
- 100 percent verification of anode placement and connection of positive lead to each anode
 Level II underwater cleaning and inspection of anodes at 10% of anodes:
- Bays 5, 14, 24, 33, and 43
- Level III underwater thickness and weight measurements of anodes: Bays 5, 24, and 43
- Level III underwater thickness and weight measurements of base metal elements and coatings (shown in Table above)
- o Bays 5, 14, 24, 33, and 43

Tier 3 Tasks

Appendix F

No planned Tier 3 inspections of buried tie rods unless warranted during future inspections.

Rev. No.	Developed by	Date	Verified by	Date	Comments	
0	C. Jones	01/27/2020	S. Foster	01/27/2020	Baseline	
1	C. Jones	NA	5. Foster	NA	Routine inspection developed	
2	S. Foster	10/11/2022		10/11/2022	Updated for 100% Manual	

Corrosion Inspection Summary

- Asset Condition
 - Corrosion Condition Rating (CCR)
 - Corrosion Protection Rating
 - Base Metal Rating
- Component Ratings by element group w/ comments
- Photographs

Required for all inspection types.

5	Corrosi	Maritime Asset on Inspection Summary	Form CMIS (V1) Barbours Cut Terminal – BCT October 6, 202 Page 2 of 2
	Ove	rall Asset Condition	
estimated corrosion rates fo	r the bulkhead wall d. There are, howev	ndition with minor to moderate i , fender piles, and fender support ver, several localized areas of dist of the assets.	framing were all ranked with a
fender piles. Current output	and structure-to-ele roviding sufficient o	e functioning as intended for the ectrolyte potential measurements athodic protection to the buikhed I.	indicate that the system is
ICF (Functional) Component ICV (Visual) Component Rai SPR Rating = 3 (Deduction = CP = 60 - 1.6 x (ICF + ICV + C	ing = 4 (Deduction = 8)	- 2)	
CR Rating = 5 (Deduction = : TYP Rating = 4 (Deduction = RED Rating = 4 (Deduction = BM = 40 - (CR + TYP + RED)	3) 2)	32	
CCR = CP + BM = 38 + 32 = 7	o		
The overall corrosion condit	ion ratina (CCR) for	BCT 5 is 70.	
	mpressed Curren	nt Corrosion Protection Elem	ents
Element(s)	Rating	Comments	
Anodes OTH Bulk Anode	4	Limited moderate marine grov elements and their attachmen purpose/use of the component	t are sound and functional
DC Power Supply	4 (Functional) 4 (Visual)	All three rectifiers are function outputs were verified. PW5-1	ual, proper gage readings and DC was turned off upon arrival of
- TRU DC Power Supply	4 (Funct)	the inspector, however, it was turned on.	deemed functional when
	4 (Visual)	more negative than -850 mV v	nore negative than -850mV vs.

Measured potentials at the fender did not meet any established criteria due to disconnection of the bond wires.

Wiring and protection was in satisfactory condition. Negative lead wiring from the builkhead wall appeared to be in satisfactory condition with minor corrosion at the connections. Positive lead wiring to the anodes exhibited

ient(s)	Rating	Comments
cal	NA	Inaccessible. Rated as 5 for scoring purposes due to age.
CS Tie Rod	NA	
cal	4	
CS Bulkhead Wall	5	The bulkhead wall was in satisfactory condition with minor corrosion at the seams and minimal general section loss, mostly in the splash and tidal zone. In 30 years of service, the average section loss was approximately 5 to 6%.
		Section loss: (>2% to ≤ 10% satisfactory)
		Estimated Corrosion Rate: (Satisfactory <2mpy)
CS Fender Piles	4	Impact damage and corrosion of piles was observed near the waterline, with an average section loss of approximately 27% near the ends of the flarges. Webs typically have minimal section loss apart from stiffeners Overall, fair amount of section loss with estimated corrosion rate between 6 and 11 mpy.
		Section loss: (Fair <10%)
		Estimated Corrosion Rate: (Fair, 6 < x ≤ 11 mpy)
indant	4	
CS Support Framing	4	Impact damage and corrosion of framing was observed near the waterline, particularly at connections.
		Section loss: (>2% to ≤ 10%, Fair) Estimated Corrosion Rate: (2 < x ≤ 6 mpy, Fair)

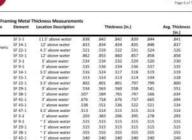
Critica

Figure 8. Negative wire connection from rectifier to builkhead wall, showing visible signs of corrosion at connection point.

corrosion or distress

Wiring and Protection — CU Wiring 3

3


Corrosion Inspection Data

- Measurements collected in field during inspection
 - Locations (exposure zone, elevation)
 - Elements
 - Units for measure

5		Carro		itime A spectio	sset n Data Form	Form O Bartanes Cut Terrier Octob J
Property:	Barbours Cut	Terminal			Asset ID:	RCT 5
Inspection Type	(S Baseline		(In-	Depth	Inspection Date(s)	May 20, 2020 (above Aug 24, 2020 (under
Scope of Impection	Entire Asset, A	Mature Wate	er and Li	where West	ter.	
Inspection Firm(s):	Prime With J					
Contract Con	Underwater:					
	Other (role): 1	N/A				
Reported By:	5. Feister, P.E.				Report Date:	Octuber 6, 2020
Corrosion Manual	Rev. 0, Octobe	er 2022			Variances from CM	N/A
Version/Date:					Procedure	
			Dista	10000	No. 1	
	oltage (V)	Current		Notes		
Rectifier ID W PW 5-1 6 PW 24-1 2 PW 43-1 5	oltage (V) 9 1	Current 58 72 81	(amps)	Notes	and off	
Rectifier ID W PW 5-1 6 PW 24-1 2 PW 43-1 5 CP Potential Mea	oitage (V) 9 1 surements (C	Current 58 72 81	(amps) d Wall)	Notes		
Rectifier ID W PW 5-1 6 PW 24-1 2 PW 43-1 5	oltage (V) 9 1 surements (C Ne On	Current 58 72 81 S Bulkhea ar Waterfe	(amps) d Wall) M	Notes		
Rectifier ID V PW 5-1 6 PW 24-1 7 PW 43-1 5 CP Potential Mea Element Location	oitage (V) 9 1 surements (C) No On Potenti	Current 58 72 81 S Bulkhea ar Waterfe	(amps) d Wall) Ne Off tential	Notes		
Rectifier ID V PW 5-1 6. PW 24-1 7. PW 43-1 5. CP Potential Mea Element Location BW 5-1	oltage (V) 9 1 surements (C No Potent -1200	Current 58 72 81 S Buikhea ar Waterfe	(amps) d Wall) se Off tential	Notes		
Rectifier ID V PW 5-1 6 PW 24-1 7 PW 43-1 5 CP Potential Mea Element Location	oitage (V) 9 1 surements (C) No On Potenti	Current 58 72 81 S Buikhea ar Waterfe	(amps) d Wall) Ne Off tential	Notes		
Rectifier ID V PW 5-1 6. PW 24-1 2. PW 43-1 3. CP Potential Mea Element location BW 5-1 BW 5-1	oltage (V) 5 1 surements (C) No 0 Potenti -1200 -1190	Current 58 72 81 S Bulkhea ar Waterfe	(amps) d Wall) se off tential 1080	Notes		
Rectifier ID V PW 5-1 6 PW 2-1 2 PW 42-1 5 CP Potential Mea Element Location BW 5-1 BW 5-1 BW 5-1 BW 24-1 BW 5-1 BW 32-1 BW 32-1	oltage (V) 9 1 surements (C Ne Potent 5200 -1200 -1200 -1200	Current 58 72 81 5 Buikhea ar Waterfe 1 0	(amps) d Wall) Ne Off tential 1080 5080 1132 5030 1290	Notes		
Rectifier ID V PW 5-1 6. PW 24.1 5. CP Potential Mea 5. Element location 8W 5-1. BW 5-1 8W 43-1. BW 24.1 8W 24-1. BW 24.1 8W 23-1. BW 33-1. 8W 37-1. BW 34-1. 8W 37-1.	oltage (V) 9 1 surements (C Ne Potenti -1290 -1390 -100 -	Current 58 72 81 5 Buikhea ar Waterfe 1 1 1 1	(amps) d Wall) ne Off tential 1080 1080 1080 1080 1080 1080 1080 108	Notes Was fr	arried off	~~~
Rectifier ID V PW 5-1 6. PW 24-1 2. PW 43-1 5. CP Potential Mea Element location BW 5-1 BW 34-1 BW 54-1 BW 34-1 BW 35-1 BW 35-1 BW 37-1 BW 37-1 BW 37-1 BW 37-1 BW 48-1 Linds - mV sr. CSI	oltage (V) 9 1 surements (C Ne On Potent -1200 -1190 -5470 -1120 -1290 -5470 -1290 -5470 -1290 -5470 -1290 -12	Current 58 72 81 S Buikhea ar Waterle bal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Wall) w off tential 1080 1132 1030 1290 920 5wrentio	Notes Was fr		ater
Rectifier ID V PW 5-1 6. PW 24-1 7. PW 43-1 5. CP Potential Mea 2000 BW 5-1 5000 BW 5-1 5000 BW 24-1 5000 BW 33-1 5000 37.1 BW 37-1 5000 37.1 BW 37-1 5000 37.1 BW 37-1 5000 37.1	oltage (V) 9 1 surements (C Ne On Potent -1200 -1190 -5470 -1120 -1290 -5470 -1290 -5470 -1290 -5470 -1290 -12	Current 58 72 81 5 Bulkhea ar Waterle bulkhea ar Waterle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Wall) w off tential 1080 1132 1030 1290 920 5wrentio	Notes Was to	arried off	uter
Rectifier ID V PW 5-1 6. PW 24-1 2. PW 43-1 5. CP Potential Mea Element location BW 5-1 BW 34-1 BW 54-1 BW 34-1 BW 35-1 BW 35-1 BW 37-1 BW 37-1 BW 37-1 BW 37-1 BW 48-1 Linds - mV sr. CSI	oitage (V) 9 1 surements (C 0 Poteet 1200 1000	Current 58 72 81 5 Buikhea ar Waterfe ial Por) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(amps) d Wall) se Off tential 1080 1080 1080 1080 1080 1080 1080 108	Notes Was to	uned att n near surface of n	uter
Bectifier ID V PW 5-1 6 PW 24-1 2 PW 44-1 5 CP Potential Measurement Location BW 5-1 BW 5-1 BW 14-1 BW 5-1 BW 14-1 BW 14-1 BW 24-1 BW 24-1 BW 24-1 BW 35-1 BW 35-1 BW 35-1	oitage (V) 9 1 surements (C 0 Potenci 1200 1000 120	Current 58 72 81 5 Buikhea ar Waterle ial Per)))))))))))))))))))	d Wall) Ni Off tential 1080 1132 1030 1030 920 500 920 500 920 500 920 500 920 500 920 500 920 500 920 500 920 920 920 920 920 920 920 920 920 9	Notes Was to to take	arried off	uter
Bestifier ID V PW 5-1 6. PW 24-1 7. PW 24-1 7. PW 48-1 5. CP Fotential Mese Element location BW 5-1 8W 14-1. BW 5-1 8W 34-1. BW 24-1 BW 33-1. BW 33-1 BW 33-1. BW 33-1 BW 33-1. BW 34-1 CP Potential Meae CP Potential Meae Element location	ohage (V) 5 1 surements (C 0n Peterse -1200	Current 58 72 81 5 Bulkhea ar Waterfe ial Per 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Wall) st Off tential 1080 108	Notes Was 1 • • • • • • •	rmed off n near surface of m	uter
Bectifier ID V PW 5-1 6 PW 24-1 2 PW 44-1 5 CP Potential Measurement Location BW 5-1 BW 5-1 BW 14-1 BW 5-1 BW 14-1 BW 14-1 BW 24-1 BW 24-1 BW 24-1 BW 35-1 BW 35-1 BW 35-1	ohage (V) 5 1 surements (C) Me 0 0 Potant 1200 1000 100	Current 58 72 81 5 Buikhea ar Waterfe ial Por 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(amps) d Wall) tential 1080 1080 1030 1030 1030 1030 500 500 500 500 500 500 500 500 500	Notes Wasts - - Volt Br	med off n near surface of m tage	ater

Form CMID (VL0) Bartones Cut Terminal – BCT 5 October 6, 2020 Fage 1 of 7	5		Corrosion	daritime i Inspecti		Form		Retours	Form OMD (V1.0) Cut Terminal – NCT 5 October 6, 2020 Fage 2 of 7	5	
CT S. Tay 20, 2020 (abovewater)	Anode Mass I Element	Rem		maining N						Support Fram Exposure Zone	ing Metai T Element
ag 24, 2020 (underwater)	AN 5-1* AN 24-1 AN 43-1 Average	15.5 87.7 1301	No (7.03 kg) 15 5 No (18.89 kg) 87 No (49.89 kg) 98	Anode 2 (kg/b) 15.5 h (7.03 kg) 17 h (39.46 kg) 98.5 h (44.68 kg)						Atmospheric	58 5-1 58 14-1 57 22-1 58 33-1
cuber 6, 2020			AN 24-1, AN 43-1 ickness Measuremer Location Description		в	ickress (e.j		Aug. Thickness (in.)	Selech	57 3-1 54 9-1 57 14-1 57 15-1 59 22-1
/A		8W 3-1	Flange Web	.534 .101	.487 .389	.538 .388	.499 .397	.535 .390	.519 .390	Spears	SF 29-1 SF 38-1 SF 41-1
		8W 8-1	Flange Web Flange	-513 -387 -525	.538 .391 .526	.535 .354 .538	.531 .383 .540	.537 .385 .527	.535 .380 .531		57 43-3 57 47-1
		RW 15-1 RW 22-1	Web	_391 _544	386	.390 .518	.393 .517	389 540	.390 .534	Tidal	5F 3-1 5F 9-1 5F 29-1
	Atmospheric	8W 29-1	Web Flange Web	.375 .551 .391	.348 .527 .394	.375 .557 .396	363 527 398	.371 .535 .391	.367 .539 .392	i sdan	5F 38-1 5F 43-1
		8W 35-1	Flange Web	.391 .391 .375	.394 .545 .378	.511	.398 .309 .353	.540 .371	.531 .375	Support Fram	
		BW 41-1	Flange Web Flange	.512 .385 .536	.524 .371 .556	.505 .363 .553	.509 .354 .510	.529 .350 .509	.516 .368 .533	Exposure Zone	Dement
		8W-47-1 8W-2-1	Web Selow wale beam	393 530	.556 .400 .530	.553 .304 .530	.510 .385 .530	.509 .378 .530	.388 .530		CT 14-3 (SF 1
		BW 6-1 BW 10-3 BW 14-1	Beicw wale beam Beicw wale beam Beicw wale beam	325 -535 -505	.525 .535 .505	.525 .525 .505	.525 .535 .505	.530 .535 .505	526 535 505	Atmospheric	CT 34-3 (SF CT 33-3 (SF CT 3-2 (SF)
	Splash	8W 18-1 8W 22-1 8W 26-1	Beitre wale beam Beitre wale beam Beitre wale beam	.525 .513 .520	.520 .515 .520	.520 .515 .520	.520 .515 .520	.520 .515 .520	321 515 530		CT 9-2 (5F 1 CT 14-2 (5F CT 15-2 (5F
		8W 30-1 8W 34-1	Below wale beam Below wale beam	.530 .535	.525 .535	.530 .535	.530 .535	.530 .535	.529 .535	Splash	CT 22-21(5F CT 25-21(5F CT 25-21(5F CT 36-21(5F
		8W 38-1 8W 42-1 8W 48-1	Below wate beam Below wate beam Below wate beam	.520 .535 .530	.520 .535 .530	.520 .535 .530	.520 535 530	.520 .535 .530	.520 .535 .530		CT 41-2 (SF CT 43-2 (SF
		8W 1-1 8W 6-1 8W 10-3	WaterSne WaterSne WaterSne	.530 .525 .540	.530 .525 .540	.530 .525 .540	530 525 540	.530 .525 .540	.530 .525 .540		CT 47-2 (SF CT 3-2 (SF 1 CT 9-2 (SF 1
	Tatal	8W 14-1 8W 18-1 8W 22-1	Waterline Waterline Waterline	-505 -525 -505	.505 .525 .505	.505 .525 .505	.505 .525 .505	.505 .575 .505	505 525 505	Tidal	CT 38-3 (5F
		BW 26-1 BW 30-1	Waterline Waterline	.530 .530	.520 .530	.520 .535	.520 .530	.520 .530	520 531		ICT 43-2 (SF

Maritime Asset

Maritime Asset

Corrosion Inspection Data Form

Form CMID (v1.0

On.)

.837

526

.858

.530

.535

.519

.800

.551

.634

.694

.534 514

.293

515

.515 .555 .540

ethnes Let Terminal - BCT 5 October 6, 2005 Page 6 of 3

From TARD (VL II)

Exposure Zone	Element		Avg. Thickness (milk)					
	CT 5-2 (SF 5-1)	11.5° above water	13.5	12.9	13	12.6	18.5	13.1
Atmospheric	CT 14-2 (SF 14-1)	12' above water	14.2	14.1	34	12.3	12.4	11.4
Appropriette	CT 24-2 (5F 24-1)	4.5' above water	12	10.ň	10.3	14.2	10.2	11.5
	CT 318-2 (SF 33-1)	12' above water	13.4	18.7	13.4	13.5	13.7	13.5
	CT 8-2 (SF 3-1)	3' above water	10	9.3	3.9	9.7	9.5	9.7
	CT 9-2 (SF 9-3)	3' above water	10.3	5.8	9.3	10.1	9.2	9.7
	CT 14-2 (SF 14-1)	3.5' above water	9.7	10	10.1	10.1	10.3	10
	CT 15-2 (5F 15-1)	2' above water	17	15.6	17.7	15.2	13.3	15.8
Splash	CT 22-2 (SF 22-1)	1.5' above water	26.6	28.2	26.1	29.1	28.8	27.8
Shenu	CT 29-2 (SP 29-1)	3' above water	9.3	9.6	9	9.7	9.5	9.4
	CT 38-3 (57 38-3)	T above water	32.4	30.1	30.3	54.2	37	32.8
	CT 41-3 (SF 41-1)	3' above water	27.6	29.6	25.2	26.8	28.1	27.5
	CT 43-2 (SF 43-1)	1' above water	12	12.2	11.7	19.8	11	11.9
	CT 47-2 (SF 47-1)	3.5° above water	9.6	5.2	9.4	9.4	9.7	9.5
	CT 3-2 (SF 3-1)	I' above water	36.7	31.6	32.5	27.7	33.2	30.3
	CT 9-2 (5F 9-1)	= 1' above water	28.6	27.2	26.7	27.2	28.4	27.6
Tidal	CT 38-2 (SF 38-3)	Galvastord (** 1* above water)	9	9.2		8.4	8.6	8.6
	CT 43-2 (SF 43-1)	Galvanized (~ 1' above water)	10.7	11.2	10.6	18.3	11.2	10.8

Inspection History

Record of all inspections performed for the asset.

Includes: Asset Identification Date of Inspections Inspection Types Inspection Firms Component Ratings CP, BM, and Overall CCR

Generate during baseline inspection. Update after each subsequent inspection.

Property: Barbours Cut Terminal		Asset ID:	BCT 5	
Asset Classification:	Wharf	Year of Original Construction:	1990	
Inspection Frequency:	Ref. Inspection Plan	Year(s) of Significant Modifications or Repairs:	2002, 2004, 2008, 2011	

Dates of Inspections, Asset, and Component Ratings

	-	-	-	
Date:	1/24/2020			
Inspection Type:	Baseline			
Inspection Status	Completed WJE			
Inspection Firm: Above Water				
Inspection Firm: Underwater	Rio			
Corrosion Condition Rating (CCR)	80			
Corrosion Protection (CP)	47			
ICCP Functionality	5			
ICCP Visual	5			
SA Functionality	NA			
SA Visual	NA			
Surface Protection	4			
Base Metal (BM)	33			
Critical	5			
Typical	5			
Redundant	4			

Element Inspection Form

Record of element-level observations for an asset.

Can be generated from Port Houston Database Access File

Includes: Component & Asset Identification Element Condition States Photographs

Required for routine and baseline inspections.

Surface Pro	tection									
CT 1-1	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	CS3	CS3NC	CS4	CS4NC
CT 1-1	Baseline	100	0	100	0	0	0	0	0	0
CT 1-1	ADHS		0	0	30	0	0	0	0	0
CT 1-1	PEEL		0	0	0	0	0	0	15	0
CT 1-2	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	CS3	C\$3NC	C54	CS4NC
CT 1-2	Baseline	400	0	400	0	0	0	0	0	0
CT 1-2	PEEL		0	0	0	0	0	0	115	0
CT 1-2	ADHS		0	0	240	0	0	0	0	0
CT 1-3	CSCode	Total Qty.	ot Accessib	CS1	CS2	CS2NC	CS3	CS3NC	CS4	CS4NC
CT 1-3 CT 1-3	CSCode Baseline	Total Qty. 134	ot Accessib	CS1 134	CS2 0	CS2NC 0	CS3 0	CS3NC	CS4 0	CS4NC 0
					I					
CT 1-3	Baseline	134	0	134	0	0	0	0	0	0
CT 1-3 CT 1-3	Baseline	134	0	134	0	0	0	0	0	0
CT 1-3 CT 1-3 CT 2-1	Baseline PEEL CSCode	134 Total Qty.	0 0 ot Accessib	134 0 CS1	0 0 CS2	0 0 CS2NC	0 10 CS3	0 0 CS3NC	0 15 C\$4	0 0 CS4NC
CT 1-3 CT 1-3 CT 2-1 CT 2-1	Baseline PEEL CSCode Baseline	134 Total Qty. 100	ot Accessibi	134 0 CS1 100	0 0 CS2 0	0 0 CS2NC 0	0 10 CS3 0	0 0 <u>CS3NC</u> 0	0 15 CS4 0	0 0 0 0 0
CT 1-3 CT 1-3 CT 2-1 CT 2-1 CT 2-1	Baseline PEEL CSCode Baseline PEEL	134 Total Qty. 100	ot Accessibl	134 0 CS1 100 0	0 0 0 0 0	0 0 CS2NC 0	0 10 CS3 0	0 0 CS3NC 0	0 15 0 0 12	0 0 0 0 0

Follow-Up Action Form

Summary of recommended follow-up actions.

Includes: Asset Identification Inspection Information Conditions Identified & Recommended Actions Photographs

Required for routine and baseline inspections.

Report Date:

January 28, 2020

Underwater: Rio Engineering, Inc. (Rio)

S. Foster, WJE

Reported By:

		Follow-u	p Actions									
Item No.:	1	Priority:	Priority	⊠Routine								
Component:	Impressed Current Cathodic Protection System											
Element Type:	DC Power Supply	Element ID(s):	PW 5-1									
Condition Identified:	Panel ammet		of current, voltag	e) ge drop was measured across shunt and panel meter and overall CP system is								
Reason for action:	To easily obse	erve amount of curr	ent provided by	rectifier								
Recommended Action:	panel as brok		ignore panel re	r or mark meter and record ammeter ading and record current measurement erly.								
			and the second second	and the second se								
		REGATI	VE									

Inspection Deliverables

Structure Length:	1000 ft.	Channel De
	Denk: 108 ft. 9 in.	Channel De
	Protestrian occass to str	
required to channel ai	ve of builthood wall (8-fo	ot design clear sp

Structure Corrosion Prote

BCT 5 is located near the west end of the Barbour's Cut Terminal structural drawings are dated 1980, and wharf construction was and modifications performed at various times during the service

- 2002: Repair and localized recoating of fender system. · 2004: Repair and localized recoating of fender system
- · 2004: Repair of the crone rail expansion point.
- 2008 Repair and localized recoating of fender system.
- 2011: Repair and localized recoating of fender system.

Terminal

Drawing Set Title

C107.4

C107-3

C1074

C107-1

+ 2024: Chupon ladder testing program

Barbour's Cut - Phase I

Sheet Pile Buikhead for Wharves

Nos. 5 and 6 at Barbour's Cut

Paverments and Utilities for

Barbour's Cut - Phone E

Barbinar's Cut Terminal

Barbour's Cut - Phase E

Container Whitef No. 2 of

Pavements and Utilities for Container Terminal No. 5 at

Container Terminal No. 5 at

Payersents and Utilities for Container Terminal No. 5 at

	rrosion inspection Plan	Bartonaris Cut Territrial – BCT 5 Last spitale: October 11, 2022 Fage 3 of 2
Barbours Cut Terminal	Asset ID:	act 5
Whart	Year of Original Construction	1990
Ouen	Year(s) of Significant Modifications or Resairs':	2002, 3004, 2008, 2011
Containerized Cargo	Date of Most Recent Inspection:	April 2020 (above-water) August 2020 (below-water)
Concerning and the state of the state of the	Inspection Plan	
	Barbours Cut Terminal Whart Open	Burbours Cut Terminal Asset ID: What* Vera d'Original Open Modification on Repairs Open Date of Work Repert Certainstruct Cargo Impediant

Functionality Checks (Inspection Frequency = 1 year)

al impaction of the nine wald connections between the negative leads, and structure D to the fer-

5	Maritime Asset Corrosion Inspection Summary	Form CME (VLG Barbours Cut Tamminal – BCT 3 Dictober 6, 2030 Page 2 of 20

The corrasion protection systems appeared to be functioning as intended for the buildhead wall, but not the fender siles. Current outsut and structure to electrolice extential measurements indicate that the success is operation as intended and possisling sufficient catheolic protection to the buildend well. The band wires to the

Provide a complete asset file regarding corrosion protection and base metals for inspection and database purposes

Maritime Asset

Follow-up Actions

Stateline Citostine Citoscial Inspection Date

Follow-un Actions

SPriority

Entire Asset, Above Water and Under Water Drimer With Tanone Fistmer Recordstate for Dutt

Underwater: No Engineering, Inc.

Priority:

Element (D(s): PW S-L

med off is unknown or function with rectifiers turned off ectifiers are turned on and functioning

Figure 1. As-found power switch of the kinduide rectifier in Bay 5 was turned off.

Asset 10

Report Date:

med off when the cover was initially opened. The time duration for which

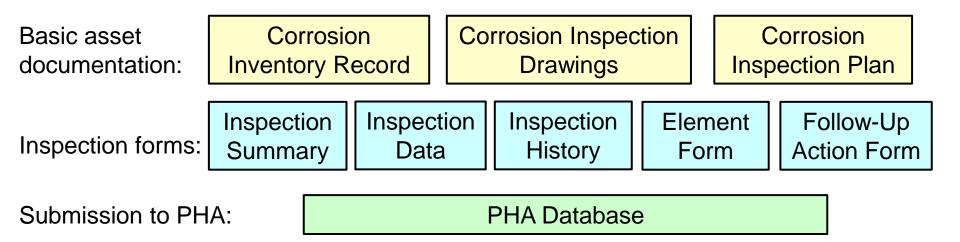
ed on and left running after completion of the inst

Routine

Barbours Cut Terminal

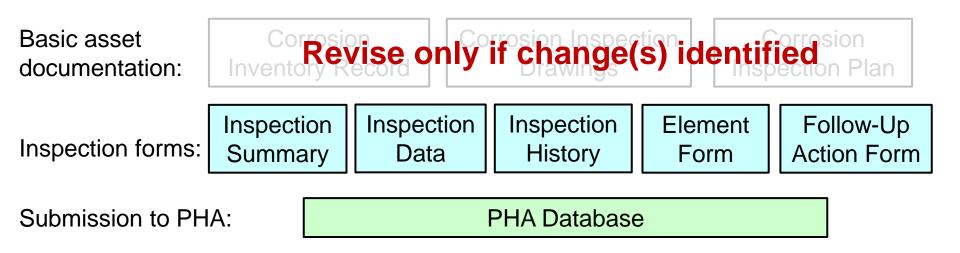
Other (role): N/A

C. James, Wolf


For-CMFA OVE DI

Berlinsen Cat Terminal - BCT 5 October 6, 2025 Fige 1 of 1

August 4-5, 2020 (underwaher)


October 6, 2020

Baseline Inspection Deliverables

Routine Inspection Deliverables

Module 8.1 Wrap-Up

- Describe overall documentation and reporting requirements for each type of inspection
- Describe the purpose of each type of documentation required by the Corrosion Manual

END OF MODULE

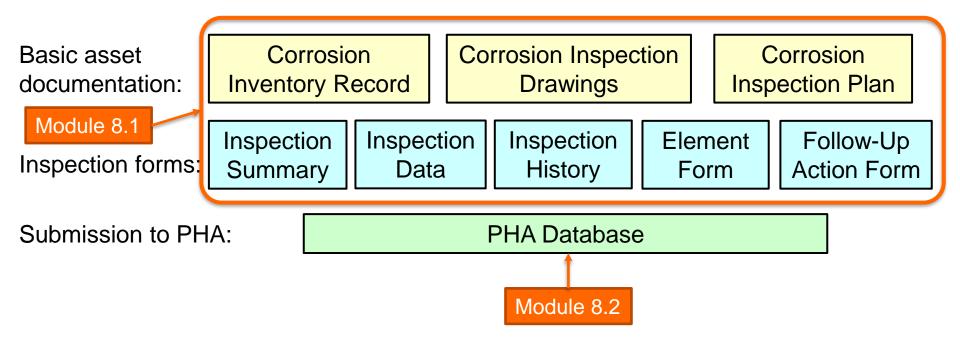
Module 8.2

Database Entry and GIS

Corrosion Manual Training Course

Module Objectives

- Describe overall database upload and reporting requirements for each type of inspection
- Understand key GIS requirements for Corrosion Manual and Port Requirements


Module Resources

Chapter 8: Documentation and Reporting

- 8.12 Inspection Database Requirements
- FICAP Corrosion Manual Inspectors Digital Data Entry System Guide
- MS Access Database Template

Documentation Overview

Digital Inspection Database Hierarchy

	PHA Master Database	Maintained by PHA (master SQL database)
	Inspector's Digital Database Template	 database template in Microsoft Access with basic forms to allow for data entry
ð D	Field Collection (Paper/ Mobile Device)	Field collection of data is up to the inspection firm

Figure 8.3. Digital inspection database hierarchy.

Database Entry System Guide

FICAP CORROSION MANUAL

DATA ENTRY SYSTEM GUIDE

INSPECTOR'S DIGITAL

Page 9

- Year Constructed: Enter the 4-digit year the structure was constructed Significant Corrosion Maintenance Years: Enter the string list of 4-digit years
- separated by commas significant maintenance was performed on the structure.
- Below Water Line Corrosion Inspection Interval: Enter numerical interval in 2
- h. Date of Last Corrosion Inspection: Enter date of last corrosion inspection formatted MM/DD/YYYY.
- Above Waterline Corrosion Inspection Interval: Enter numerical interval in years. Railroad; Enter description of milroad service.
- Structure History: Enter the paragraph description of the structure history.
- Wharf Usage: Enter the description of the wharf usage.
- Channel Depth at Fender: Enter the numerical depth in feet. m
- Channel Depth at Bulkhead: Enter the numerical depth in feet.
- Structure Length: Enter the numerical length in feet.
- Deck Area: Enter the numerical area in square feet.
- Structure Deck Width: Enter the numerical length in feet.
- Apron Area: Enter the numerical area in square feet.
- Structure Apron Width: Enter the numerical length in feet.
- Deck Elevation above MLT: Enter the numerical length in feet. .

3.3.2. Add Drawings

Baseline inspections should be accompanied with drawings used for the inspection that identify the Element ID's. The Add Drawings form provides the user the ability to identify drawing documents on the computer and have these automatically conied to drawing folder path in the IDDES database application directory.

FICAP CORROSION MANUAL INSPECTOR'S DIGITAL DATA ENTRY SYSTEM GUIDE

Baseline Data Overview

- 1. Component ID: Select the Component with Elements that exist to be inspected.
- 2. Component Description: Outputted description of the Component for the particular Asset. This is reported in the Structure Inventory report.
- 3. Edit Component Description: Opens a modal form to edit the component description. (See
- 4. Manage Element Groups: Opens a modal form to edit the element groups. (See 3.5.2) Element groups (i.e. BR-02 CS Moveable Bearings) are required to define the Element ID. Readred
- 5. Add Component: All the Component ID's are initially displayed in an empty template database. Non-existing components for an asset should be removed. If a user accidently removes a component it can be added back. This button opens a modal form to add back Components that may have deleted. (See 3.5.3)
- 6. Remove Component: Deletes a Component, which should be done for components that do not exist for an asset. WARNING: Deleting a Component containing elements, deletes those elements and all of its associated data including ratings!
- 7. Element Dataview: Add/edit elements contained within the component. User must first add element groups to the component prior to adding elements. The following information is added in this view:
 - a. Element ID: This is the unique ID of the element. See the Corrosion Manual for the guidance on the creation of element ID's.
 - b. Element Descriptor: Output only, based on the selected Element Group Code.
 - c. Element Group Code: The Corrosion Manual code for the element. This is limited to selection setup in the Manage Element Groups.
 - d. Quantity: A positive numerical quantity value entered using the defined units of the Element Group Code.
 - e. Units: Outroit only, a helpful indicator of the required units for the element.
- 8. Switch Subform View: Enables switching the sub-form to datasheet view. In this spreadsheet view, editing features such as copy and pasting (e.g. from Excel) are enabled in

Chapter 3: Walk Through

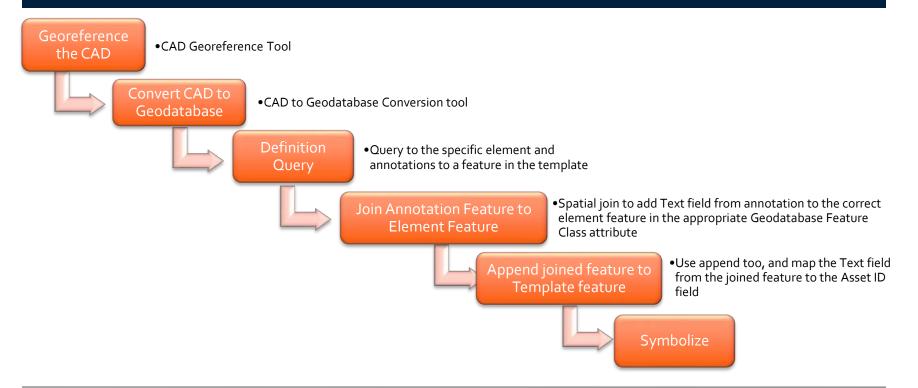
February 2023 Page 11

Example Database Entry

GIS System Requirements and AutoCAD to GIS Conversion

Port GIS Geodatabase

- Convert AutoCAD CAD .dwg corrosion inspection drawings to properly geolocated ArcGIS File Geodatabase Feature Classes.
 - After baseline inspection to verify in-situ locations, elements
- Assign proper Asset ID Attribute values to ArcGIS File Geodatabase Feature Classes according to FICAP Corrosion Manual
- Deliver Esri ArcGIS File Geodatabase & ArcGIS Pro Map Package


AutoCAD to GIS Conversion

- The following datasets are required for the AutoCAD to Geodatabase conversion:
- 1. CAD .dwg of the Corrosion Assets (Elements)
- 2. Finalized In-Situ PDF of the AutoCAD drawings
- 3. PHA Esri File Geodatabase template for corrosion assets

NOTE: The process can be performed using either ESRI's ArcMap or ArcGIS Pro (preference).

AutoCAD to GIS Workflow

GIS Feature Classes and Geometry

Corrosion Component	Abbreviation	Corrosion Element	Prefix	GIS Geometry (Shape)	GIS Feature Class Name
Impressed Current CP	ICCP	Protection	PR	Line (Each)	icProtection
Impressed Current CP	ICCP	Supports	SP	Line (Each)	icSupports
Impressed Current CP	ICCP	Wiring	WI	Line (Each)	icWiring
Sacrificial Anode CP	SACP	Supports	SS	Line (Each)	saSupports
Sacrificial Anode CP	SACP	Wiring	WR	Line (Each)	saWiring
Sacrificial Anode CP	SACP	Protection	РТ	Line (Linear Feet)	saProtection
Impressed Current CP	ICCP	Anode	AN	Point	icAnode
Impressed Current CP	ICCP	Supplementary Anode Materials	SM	Point	icSupplementaryAnode
Sacrificial Anode CP	SACP	Anode	AS	Point	saAnode
Sacrificial Anode CP	SACP	Supplementary Anode Materials	SE	Point	saSupplementaryAnode
Sacrificial Anode CP	SACP	Cathodic Protection Jackets	JA	Point (Circle Drawn Around)	saJackets
Impressed Current CP	ICCP	DC Power Supply	PW	Point (Each)	icDCPower
Impressed Current CP	ICCP	Monitoring Equipment	ME	Point (Each)	icMonitoringEquipment
Sacrificial Anode CP	SACP	Monitoring Equipment	MS	Point (Each)	saMonitoringEquipment
Surface Protection	SPR	Metalizing	ML	Polygon	cmMetalizing
Surface Protection	SPR	Wraps	WP	Polygon	cmWraps
Surface Protection	SPR	Coatings	СТ	Polygon (Square Feet)	cmCoatings
Surface Protection	SPR	Hot-Dip Galvanizing	HG	Polygon (Square Feet)	cmHotGalvanizing

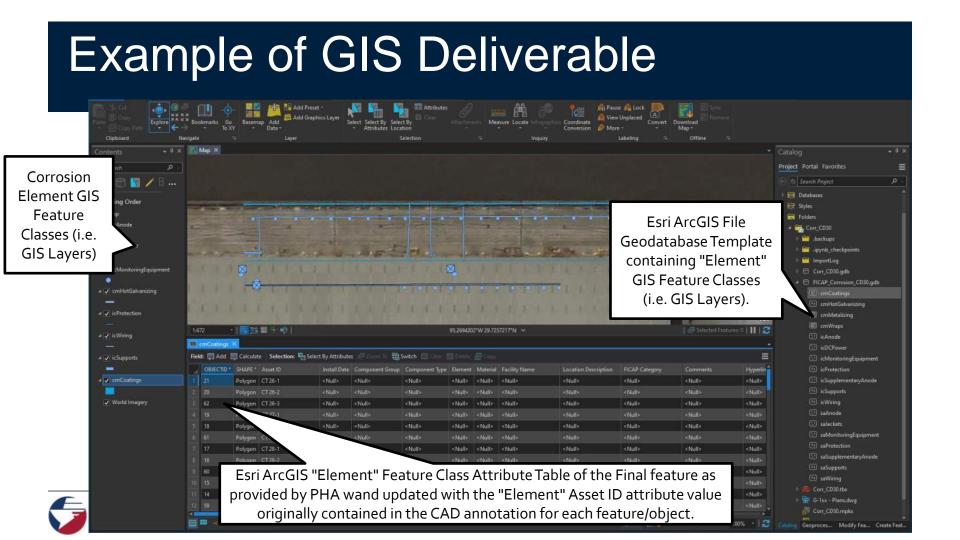
AutoCAD to GIS Workflow

Gorr_CD30 backups ipynb_checkpoints importLog

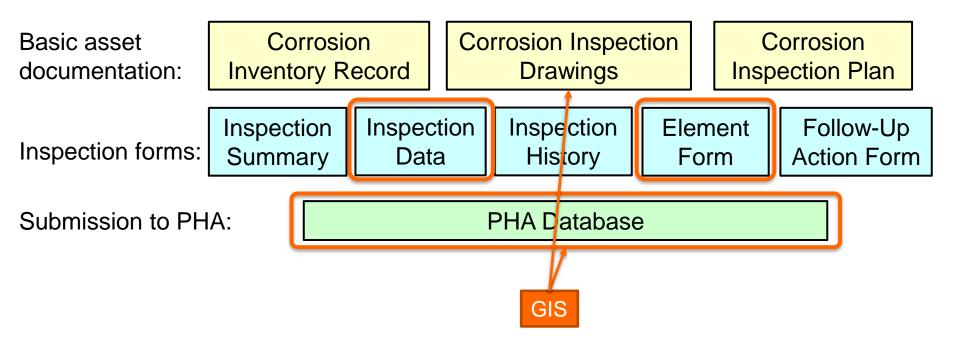
🔺 📄 Corr_CD30.gdb

G1xxPlans_CADToGeodatabase

AnnotationPoint


😰 Polygon 🛨 Polyline

Example of the dataset created by the CAD to Geodatabase tool


₩ 4	III Annotation ×															
Field: 🛱 Add 🖼 Calculate 🛛 Selection: 🏪 Select By Attributes 🧔 Zoom To 📇 Switch 📄 Clear 戻 Delete 🚍 Copy										≡						
		DocVer	DocUpdate	Docld	ScaleX	ScaleY	ScaleZ	Style	FontID	Text 🔺	Height	TxtAngle	TxtWidth	TxtOblique	TxtGenType	TxtJus
5219		AC1032	8/20/2021 7:18:43 AM	1.987247e+18	1			ARIAL	27	DB 35-12	12.7125	0	1.13	0		Right
5220		AC1032	8/20/2021 7:18:43 AM					ARIAL		DB 35-12	12.7125					Right
5221		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-13	12.7125	0	1.13			Right
5222		AC1032	8/20/2021 7:18:43 AM					ARIAL		DB 35-13	12.7125					Right
5223		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-2	12.7125		1.13			Cente
5224		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-2	12.7125					Cente
5225		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL	27	DB 35-3	12.7125	0	1.13			Cente
5226		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-3	12.7125					Cente
5227		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-4	12.7125	0	1.13			Cente
5228		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL		DB 35-4	12.7125					Cente
5229		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL	27	DB 35-5	12.7125	0	1.13			Cente
5230		AC1032	8/20/2021 7:18:43 AM	1.987247e+18				ARIAL	27	DB 35-5	12.7125	0	1.13	0		Cente

Annotation feature table with the field "Text" containing the Asset ID for the elements

Documentation Overview

END OF MODULE